Community Inter-comparrison Suite

Documentation
Release 0.6.5

Centre of Environmental Data Archival

August 31, 2015

Contents

Installing CIS

1.1 Checkingthe version i e e e
1.2 Dependencies v v v v v e
What kind of data can CIS deal with?

2.1 WIIING . . . o o e e e e e e e e e e e e e e e
2.2 Reading e e e e e e e e
2.3 Datagroups . . . v v e
2.4 Reading NetCDF4 Hierarchical Groups o i ittt e et e
2.5 Example plots . . . oL e e e e

Using the command line

3.1

LSF Batch Job Submission o o e e e e e e e e

Getting file information

Subsetting

5.1 Examples o e e e e e e e e e e e
Aggregation

6.1 Conditional AGEregation o i e e e e e e e e e e e e e e
6.2 Aggregation Examples L e e e e e e e
Co-location

7.1 Available Colocators and Kernels
7.2 Colocationoutput files L e e e e e e
7.3 Basiccolocationdesign L
7.4 Writing your own pluginsl e e

Colocation Examples

8.1 Ungridded to Ungridded Colocation Examples
8.2 Examples of co-location of ungridded dataonto gridded
8.3 Examples of Gridded to Gridded Colocation
Plotting

9.1 Plot Options o o it e e e e e e e e e e
9.2 SavingtoaFile e
9.3 PlotFormatting e e e e e e e e e e e e e e
9.4 Setting Plot Ranges e e e e e

[SSERON]

0 N ON Lt L

21

23

25
26

29
31
31

43
45
45
46
50

51
51
62
69

10

11

12

13

14

9.5 Overlaying Multiple Plots e
9.6 Scatter Overlay Plots e e e e e e e
9.7 Available Colours and Markers L e e

Evaluation
10.1 Evaluation Examples o e e e e e e

Statistics
11.1 Statistics Example L e e e e e e e e e

Overlay Plot Examples

12.1 Contouroverheatmap i it e e e e e e
12.2 Filled contour with transparency on NASA BlueMarble
12.3 Scatter plus Filled Contour e e e e e
12.4 FileLocations o i i e e e e e e

Maintenance and Developer Guide

13.1 Experimental Branches e e e
132 Unittest SUILE . . .« v v v o v i e
13.3 Dependencies o it e e e e e e
13.4 APIDocumentation ittt e e e e e e e e
13.5 Plugindevelopment i e e e e e e e e e

Indices and tables

83
85

93
94

97
97
98
99
100

101
101
101
101
102
102

107

Community Inter-comparrison Suite Documentation, Release 0.6.5

Contents:

Contents 1

Community Inter-comparrison Suite Documentation, Release 0.6.5

2 Contents

CHAPTER 1

Installing CIS

First, clone the git repository: $ git clone http://proj.badc.rl.ac.uk/git/jasmin_cis.git

If you have admin rights, simply run the setup.py install script. It will check your system for dependencies but won’t
install them for you (installations scripts specifically for ubuntu 12 and fedora 17 are provided under the ‘scripts’
directory, but these come with no warranty).

If you haven’t got admin rights, all is not lost! you can still install CIS by first creating a virtual environment:

$ virtualenv CISENV -p /usr/bin/python2.7 --system-site-packages
$ source CISENV/bin/activate

To deactivate the virtual environment, simply type $ deactivate

Note that, on the Jasmin cluster, some ports needs to be to open to make virtualenv works with:

$ export http_proxy=wwwcache.rl.ac.uk:8080
$ export https_proxy=wwwcache.rl.ac.uk:8080

Then simply run the setup.py script as you normally would. Now you’re ready to rock and roll!

To check that CIS is installed correctly, simply type cis from the command line and should see something like:

(CISENV) [user@computer ~]$ cis
usage: CIS [-h] {plot,info,col,version}
CIS: error: too few arguments

1.1 Checking the version

Typing cis version displays the version number, for example:

(CISENV) [user@computer ~]$ cis version
Using CIS version: VOR6MO (Development)

1.2 Dependencies

Use the following command to check the dependencies that CIS requries to run:

‘$ python setup.py checkdep

Community Inter-comparrison Suite Documentation, Release 0.6.5

4 Chapter 1. Installing CIS

CHAPTER 2

What kind of data can CIS deal with?

2.1 Writing

When creating files from a CIS command, CIS uses the NetCDF 4 classic format. Ungridded output files are always
prefixed with cis—, and both ungridded and gridded output are always suffixed with . nc.

2.2 Reading

CIS has built-in support for NetCDF and HDF4 file formats. That said, most data requires some sort of pre-processing
before being ready to be plotted or analysed (this could be scale factors or offsets needing to applied, or even just
knowing what the dependencies between variables are). For that reason, the way CIS deals with reading in data files
is via the concept of “data products”. Each product has its own very specific way of reading and interpreting the data
in order for it to be ready to be plotted, analysed, etc.

So far, CIS can read the following ungridded data files:

Community Inter-comparrison Suite Documentation, Release 0.6.5

Dataset | Product Type File Signature
name
AERONET Aeronet Ground- | *.1ev20
stations
Aerosol | Aerosol_CCI| Satellite | *ESACCI* AEROSOL*
CCI
CALIOP | Caliop_L1 Satellite | CAL_LID_L1-ValStagel-V3*.hdf
L1
CALIOP | Caliop_L2 Satellite | CAL_LID_L2_05kmAPro-Prov-V3* hdf
L2
Cloud- CloudSat Satellite | *_CS_*GRANULE®*.hdf
Sat
Flight NCAR_NetODAiRAF | RF*.nc
cam-
paigns
MODIS | MODIS_L2 | Satellite | *MYDO06_L2*.hdf, *MODO06_L2*.hdf, *MYDO04_L2*.hdf,
L2 *MODO4_L2* hdf, *MYDATML2.* hdf, *MODATML2* hdf
Cloud Cloud_CCI | Satellite | *ESACCI*CLOUD*
CCI
CSV ASCII_Hyperpuirts * txt
data-
points
CIS un- cis CIS cis-*.nc
gridded output
NCAR- NCAR_NetODAiRAF | *.nc containing the attribute Conventions with the value
RAF NCAR-RAF/nimbus
GASSP NCAR_NetCDKiRAF | *.nc containing the attribute GASSP_Version
GASSP | NCAR_NetQD$hiRAF | *.nc containing the attribute GASSP_Version, with no altitude
GASSP NCAR_NetCDGrdusAd- | *.nc containing the attribute GASSP_Version, with attributes
station Station_Lat, Station_Lon and Station_Altitude
It can also read the following gridded data types:
Dataset Product Type File Signature
name
MODIS L3 MODIS_L3 | Satellite *MYDO08_D3*.hdf, *MODO08_D3*.hdf,
daily *MODO08_E3* hdf
Net_CDF NetCDF_Griddarddded * nc (this is the default for NetCDF Files that do
Gridded Data Model Data not match any other signature)

The file signature is used to automatically recognise which product definition to use. Note the product can overridden
easily by being specified at the command line.

This is of course far from being an exhaustive list of what’s out there. To cope with this, a “plugin” architecture has
been designed so that the user can readily use their own data product reading routines, without even having to change
the code - see Design Maintenance Guide for more information.

the plugins are always read first, so one can also overwrite default behaviour if the built-in products listed above do
not achieve a very specific purpose.

2.3 Datagroups

Most CIS commands operate on a ‘datagroup’, which is a unit of data containing one or more similar variables and one
or more files from which those variables should be taken. A datagroup represents closely related data from a specific

6 Chapter 2. What kind of data can CIS deal with?

Community Inter-comparrison Suite Documentation, Release 0.6.5

instrument or model and as such is associated with only one data product.
A datagroup is specified with the syntax:
<variable>...:<filename>[:product=<productname>] where:

* <variable> is a mandatory argument specifying the variable or variable names to use. This
should be the name of the variable as described in the file, e.g. the NetCDF variable name or HDF
SDS/VDATA variable name. Multiple variables may be specified by commas, and variables may be
wildcarded using any wildcards compatible with the python module glob, so that *, ? and [] can all
be used

Attention: When specifying multiple variables, it is essential that they be on the same grid (i.e. use
the same coordinates).

e <filenames> is a mandatory argument used to specify the files to read the variable from. These
can be specified as a comma seperated list of the following possibilities:

1. asingle filename - this should be the full path to the file
2. asingle directory - all files in this directory will be read

3. awildcarded filename - A filename with any wildcards compatible with the python module glob,
so that *, 7 and [] can all be used. E.g., /path/to/my/test*«file_[0-9].

Attention: When multiple files are specified (whether through use of commas, pointing at a directory,
or wildcarding), then all those files must contain all of the specified variables, and the files should be
‘compatible’ - it should be possible to aggregate them together using a shared dimension - typically
time (in a NetCDF file this is usually the unlimited dimension). So selecting multiple monthly files
for a model run would be OK, but selecting files from two different datatypes would not be OK.

* <productname> is an optional argument used to specify the type of files being read. If omitted,
the program will attempt to figure out which product to use based on the filename. See Reading to
see a list of available products and their file signatures.

For example:

i11lum:20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc
Cloud_Fraction_*:MOD*,MODIS_dir/:product=MODIS_L2

2.4 Reading NetCDF4 Hierarchical Groups

CIS supports the reading of NetCDF4 hierarchical groups. These can be specified on the command line in the format
<group>.<variable_name>,e.g. AVHRR.Ch4CentralWavenumber. Groups can be nested to any required
depth like <groupl>.<group2...>.<variable_name>.

CIS currently does not support writing out of NetCDF4 groups, so any groups read in will be output ‘flat’.

2.4.1 Reading groups in user-developed product plugins

Most of the methods in the cis.data_io.netcdf module support netCDF4 groups using the syntax described above -
users should use this module when designing their own plugins to ensure support for groups.

2.4. Reading NetCDF4 Hierarchical Groups 7

https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Data-Model.html

Community Inter-comparrison Suite Documentation, Release 0.6.5

2.5 Example plots

Latitude

_900 30 60 90 120 150 180 210 240 270 300 330 360
Longitude

| 1 1
220 230 240 250 260 270 280 290 300
(K)

Chapter 2. What kind of data can CIS deal with?

Community Inter-comparrison Suite Documentation, Release 0.6.5

le—4

0.8 .

0.6 1

TOTAL RAINFALL RATE: LS+CONV KG/M2/S (kgm—2s—1)

0.0 =50 0 50

latitude (degrees)

2.5. Example plots 9

Community Inter-comparrison Suite Documentation, Release 0.6.5

Cloud Top Pressure le3

|I LLLLLE

T

1.0

27.58

(i Pa)

Latitude

Longitude

10 Chapter 2. What kind of data can CIS deal with?

Community Inter-comparrison Suite Documentation, Release 0.6.5

—'E?B.S -129.5 -79.5 -29.5 20.5 70.5 120.5 170.5
Longitude

0 60 120 180 240 300 360 420 480 540 600
(g/ m2)

2.5. Example plots 11

Community Inter-comparrison Suite Documentation, Release 0.6.5

SEVIRI APOLLO CTT \n 12:00 UTC 13/11/2013
80 T = T = T

320
315
310
305
300
295
290
285
280
275
270
265
260
255
250
245
240
235
230
225
220
215
210
205
200
195
190
185
180
175
170

40

20k e gt . -

CTT (K)

Latitude
[=]

| | o
=80 —-60 -40 =20 0 20 40 60 80
Longitude

12 Chapter 2. What kind of data can CIS deal with?

Community Inter-comparrison Suite Documentation, Release 0.6.5

2.5. Example plots 13

Community Inter-comparrison Suite Documentation, Release 0.6.5

440870Angstrom

0.4 0.6 0.8 1.0

14 Chapter 2. What kind of data can CIS deal with?

Community Inter-comparrison Suite Documentation, Release 0.6.5

2.5

2.0

=
un

440870Angstrom
-
o

o
L

0.0

0.0

0.2

AOT 440

0.4

AOT 440

0.6

0.8

1.0

16000

14000

12000

10000

18000

16000

4000

2000

Frequency

2.5. Example plots

15

Community Inter-comparrison Suite Documentation, Release 0.6.5

320
surface temperature

11.13 316

312

308

304

(kelvin)

1.13 4300

Latitude

296

292

288

—8.855 895 99.5 284

Longitude

16 Chapter 2. What kind of data can CIS deal with?

Community Inter-comparrison Suite Documentation, Release 0.6.5

2.5. Example plots 17

Community Inter-comparrison Suite Documentation, Release 0.6.5

107
-3 F
107 g
g
o K
2 110 E
° :
=
107 ;E:
10°
’{P.
A
v
x.
P

Profile_Time (dayssinecel 600—01—0100:00 :00)

18 Chapter 2. What kind of data can CIS deal with?

Community Inter-comparrison Suite Documentation, Release 0.6.5

12000

10000

8000

6000

GGALTC (m)

4000

2000

Ambient Temperature, Reference

i

25 30 35 40 45 50 55 60
LATC (degree_N)

-0 -60 -50 -40 -30 -20 -10 0 10 20

{dea 1

2.5. Example plots 19

Community Inter-comparrison Suite Documentation, Release 0.6.5

20 Chapter 2. What kind of data can CIS deal with?

CHAPTER 3

Using the command line

Run the following command to print help and check that it runs: cis —-help

The following should be displayed:

usage: cis [-h] {plot,info,col,aggregate, subset,version}

positional arguments:
{plot,info, col, aggregate, subset, version}

plot Create plots

info Get information about a file

col Perform colocation

aggregate Perform aggregation

subset Perform subsetting

eval Evaluate a numeric expression

stats Perform statistical comparison of two datasets
version Display the CIS version number

optional arguments:
-h, —--help show this help message and exit

There are 8§ commands the program can execute:

plot which is used to plot the data

info which prints information about a given input file

col which is used to perform colocation on data

aggregate which is used to perform aggregation along coordinates in the data

subset which is used to perform subsetting of the data

eval which is used to evaluate a numeric expression on data

stats which is used to perform a statistical comparison of two datasets
* version which is used to display the version number of CIS

If an error occurs while running any of these commands, you may wish to check the log file ‘cis.log’; the default
location for this is the current user’s home directory.

3.1 LSF Batch Job Submission

CIS jobs may be submitted to an LSF type batch submission system (e.g. the JASMIN environment) by using the
command cis. 1sf instead of cis. In this case the job will be sent to the batch system and any output will be written

21

Community Inter-comparrison Suite Documentation, Release 0.6.5

to the log file.

22 Chapter 3. Using the command line

CHAPTER 4

Getting file information

Running *“ ./cis.py info $filename ‘* will print a list of the variables available in that input file such as:

Trop

latitude
longitude_1
surface
unspecified_1
levelb6

ht

msl
latitude_1

To get more specific information about a given variable, simply run:

$./cis.py info $filename --variable $varl $var2 $var3

where $Svarl, $var2 and $var3 are the names of the variables to get the information for.

Here is an example:

<type 'netCDF4.Variable'>

float32 mass (t, unspecified_1,

_FillvValue: 2e+20
date: 01/09/08

long_name: TOTAL COLUMN DRY MASS

missing_value: 2e+20
name: mass

source: Unified Model Output

time: 00:00

title: TOTAL COLUMN DRY MASS

units: kg m-2
unlimited dimensions: t

current shape = (1, 1, 145,

longitude_1)

23

Community Inter-comparrison Suite Documentation, Release 0.6.5

24 Chapter 4. Getting file information

CHAPTER 5

Subsetting

Subsetting allows the reduction of data by extracting variables and restricting them to ranges of one or more coordi-
nates.

To perform subsetting, run a command of the format:

$ cis subset <datagroup> <limits> [-o <outputfile>]

where:

<datagroup> is a CIS datagroup specifying the variables and files to read and is of the format
<variable>...:<filename>[:product=<productname>] where:

e variable is a mandatory variable or list of variables to use.

e filenames is a mandatory file or list of files to read from.

* product is an optional CIS data product to use (see Data Products):
See Datagroups for a more detailed explanation of datagroups.

<limits> is a comma separated sequence of one or more coordinate range assignments of the form
variable=[start,end] orvariable=[value] in which

e variable is the name of the variable to be subsetted, or one of X, y, z or t, which refer to
longitude, latitude, altitude or time, respectively.

e start is the value at the start of the coordinate range to be included
* end is the value at the end of the coordinate range to be included

e value is taken as the start and end value.

Note: Longitude coordinates are considered to be circular, so that -10 is equivalent to 350. The start
and end must describe a monotonically increasing coordinate range, so x=[90, —90] is invalid, but

could be specified using x=[90, 270]. The range between the start and end must not be greater
than 360 degrees. The output coordinates will be on the requested grid, not the grid of the source
data.

Note: Date/times are specified in the format: YYYY-MM-DDThh:mm: ss in which YYYY-MM-DD
is a date and hh:mm: ss is a time. A colon or space can be used instead of the ‘“T” separator (but

if a space is used, the argument must be quoted). Any trailing components of the date/time may be
omitted. When a date/time is used as a range start, the earliest date/time compatible with the supplied
components is used (e.g., 2010-04 is treated as 2010-04-01T00:00:00) and when used as a
range end, the latest compatible date/time is used. Including optional and alternative components,
the syntax is YYYY[-MM[-DD[{T|:| }hh[:mm[:ss]]]1]]. When the t=[value] form is

25

Community Inter-comparrison Suite Documentation, Release 0.6.5

used, value is interpreted as both the start and end value, as described above, giving a range spanning
the specified date/time, e.g., t=[2010] gives a range spanning the whole of the year 2010.

outputfile is an optional argument to specify the name to use for the file output. This is automatically given
a .nc extension and prepended with cis-", if it contains ungridded data, to make it
distinguishable as a colocated file. The default filename is ‘‘cis-out.nc
for ungridded data, and out . nc for gridded data.

A full example would be:

$ cis subset solar_3:xglnwa.pm.k8dec-k9nov.col.tm.nc x=[0,180],y=[0,90] -o Xglnwa—solar¢3

Gridded netCDF data is output as gridded data, while ungridded and non-netCDF gridded data is output as ungridded
data.

5.1 Examples

Below are examples of subsetting using each of the supported products (together with a command to plot the output):

$ cis subset AO2CO2:RF04.20090114.192600_035100.PNI.nc t=[2009-01-14:19:26:00,2009-01-14:19:36:00] —«
$ cis plot A02C02:cis-RF04-A02CO2-out.nc

$ cis subset IO_RVOD_ice_water_content:2007180125457_06221_CS_2B-CWC—-RVOD_GRANULE_P_R04_|EQ02.hdf t=[2
$ cis plot IO_RVOD_ice_water_content:cis-CloudSAT-out.nc —--xaxis=time --yaxis=altitude

$ cis subset Cloud_Top_Temperature:MYD06_L2.A2011100.1720.051.2011102130126.hdf x=[-50,+40],y=[0,10]
$ cis plot Cloud_Top_Temperature:cis-MODIS_L2-out.nc

$ cis subset cwp:20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fvl.0.nc x=[85,9%0],y=[-3, 3]
$ cis plot atmosphere_mass_content_of_cloud_liquid_water:cis-Cloud_CCI-out.nc

$ cis subset AOD870:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02/02.nc x=[-5,
$ cis plot atmosphere_optical_thickness_due_to_aerosol:cis-Aerosol_CCI-out.nc

$ cis subset 440675Angstrom:920801_121229_Abracos_Hill.lev20 t=[2002] -o Aeronet-out
$ cis plot 440675Angstrom:cis-Aeronet-out.nc —--xaxis=time --yaxis=440675Angstrom

$ cis subset solar_3:xglnwa.pm.k8dec-k9nov.vprof.tm.nc y=[0,90] -o Xglnwa_vprof-out
$ cis plot solar_3:Xglnwa_vprof-out.nc

$ cis subset solar_3:xglnwa.pm.k8dec-k9nov.col.tm.nc x=[0,180],y=[0,90] -o Xglnwa-out
$ cis plot solar_3:Xglnwa-out.nc

$ cis subset Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf x=[0,179.9],y=[(
$ cis plot Cloud_Top_Temperature_Mean_Mean:cis-MODIS_L3-out.nc

The files used above can be found at:

/group_workspaces/jasmin/cis/jasmin_cis_repo_test_files/
2007180125457_06221_CS_2B-CWC-RVOD_GRANULE_P_RO04_E02.hdf
20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc
20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc
MOD08_E3.A2010009.005.2010026072315.hdf
MYDO6_L2.A2011100.1720.051.2011102130126.hdf
RF04.20090114.192600_035100.PNI.nc
xglnwa.pm.k8dec-k9nov.col.tm.nc
xglnwa.pm.k8dec-k9nov.vprof.tm.nc

26 Chapter 5. Subsetting

Community Inter-comparrison Suite Documentation, Release 0.6.5

/group_workspaces/Jjasmin/cis/data/aeoronet/AOT/LEV20/ALL_POINTS/
920801_121229_Abracos_Hill.lev20

5.1. Examples 27

Community Inter-comparrison Suite Documentation, Release 0.6.5

28 Chapter 5. Subsetting

CHAPTER 6

Aggregation

The Community Intercomparison Suite (CIS) has the ability to aggregate both gridded and ungridded data along one
or more coordinates. For example, you might aggregate a dataset over the longitude coordinate to produce an averaged
measurement of variation over latitude.

CIS supports ‘complete collapse’ of a coordinate - where all values in that dimension are aggregated so that the
coordinate no longer exists - and ‘partial collapse’ - where a coordinate is aggregated into bins of fixed size, so that
the coordinate still exists but is on a coarser grid. Partial collapse is currently only supported for ungridded data. The
output of an aggregation is always a CF compliant gridded NetCDF file.

The aggregation command has the following syntax:

$ cis aggregate <datagroup>|[:options] <grid> [-o <outputfile>]

where:

<datagroup> is a CIS datagroup specifying the variables and files to read and is of the format
<variable>...:<filename>[:product=<productname>] where:

e <variable> is a mandatory variable or list of variables to use.
e <filenames> is a mandatory file or list of files to read from.
e <productname> is an optional CIS data product to use (see Data Products):
See Datagroups for a more detailed explanation of datagroups.
<options> Optional arguments given as keyword=value in a comma separated list. Options are:

* kernel=<kernel> - the method by which the value in each aggregation cell is determined. <kernel>
should be one of:

— mean - use the mean value of all the data points in that aggregation cell. For gridded data, this mean
is weighted to take into account differing cell areas due to the projection of lat/lon lines on the Earth.

— min - use the lowest valid value of all the data points in that aggregate cell.
— max - use the highest valid value of all the data points in that aggregate cell.

— moments - In addition to returning the mean value of each cell (weighted where applicable), this
kernel also outputs the number of points used to calculate that mean and the standard deviation of
those values, each as a separate variable in the output file.

If not specified the default is moments.

* product=<productname> is an optional argument used to specify the type of files being read. If
omitted, CIS will attempt to figure out which product to use based on the filename. See Reading to see a
list of available product names and their file signatures.

29

Community Inter-comparrison Suite Documentation, Release 0.6.5

<grid> This mandatory argument specifies the coordinates to aggregate over and whether they should be completely
collapsed or aggregated into bins. Multiple coordinates can be aggregated over, in which case they should
be separated by commas. Coordinates may be identified using their variable names (e.g. latitude) or by
choosing from x, vy, t, z, p which refer to longitude, latitude, time, altitude and pressure respectively.

e Complete collapse - To perform a complete collapse of a coordinate, simply provide the name of the
coordinate(s) as a comma separated list - e.g. x,y will aggregate data completely over both latitude
and longitude. For ungridded data this will result in length one coordinates with bounds reflecting the
maximum and minimum values of the collapsed coordinate.

e PFartial collapse - To aggregate a coordinate into bins, specify the start, end and step size of those bins in
the form coordinate=[start, end, step]. The step may be missed out, in which case the bin will
span the whole range given. Partial collapse is currently only supported for ungridded data.

Note: Longitude coordinates are considered to be circular, so that -10 is equivalent to 350. The start and
end must describe a monotonically increasing coordinate range, so x=[90, -90, 10] is invalid, but could be

specified using x=[90, 270, 10]. The range between the start and end must not be greater than 360 degrees.

Complete and partial collapses may be mixed where applicable - for example, to completely collapse time and
to aggregate latitude on a grid from -45 degrees to 45 degrees, using a step size of 10 degrees:

t,y=[-45,45,10]

Note: For ungridded data, if a coordinate is left unspecified it is collapsed completely. This is in contrast to
gridded data where a coordinate left unspecified is not used in the aggregation at all.

Note: The range specified is the very start and end of the grid, the actual midpoints of the aggregation cells
will start at start + delta/2.

Date/times:

Date/times are specified in the format: YYYY-MM-DDThh:mm:ss in which YYYY-MM-DD is a date and
hh:mm:ss is a time. A colon or space can be used instead of the “T” separator (but if a space is used, the
argument must be quoted). Any trailing components of the date/time may be omitted. When a date/time is used
as arange start, the earliest date/time compatible with the supplied components is used (e.g., 201 0-04 is treated
as2010-04-01T00:00:00) and when used as a range end, the latest compatible date/time is used. Including
optional and alternative components, the syntax is YYYY [-MM[-DD [{T|:| }hh[:mm[:ss]]11]11].

Date/time steps are specified in the ISO 8061 format PnYnMnDTnHnMnS, where any particular time period is
optional, for example P1MT30M would specify a time interval of 1 month and 30 minutes. Years and months
are treated as calendar years and months, meaning they are not necessarily fixed in length. For example a date
interval of 1 year and 1 month would mean going from 12:00 15th April 2013 to 12:00 15th May 2013. The are
two exceptions to this, in rare cases such as starting at 30th January and going forward 1 month, the month is
instead treated as a period of 28 days. Also, for the purposes of finding midpoints for the start in a month the
month is always treated as 30 days. For example, to start on the 3rd November 2011 at 12:00 and aggregate over
each month up to 3rd January 2013 at 12:00:

e £t=[2011-11-03T12:00,2013-01,P1M]

<outputfile> is an optional argument to specify the name to use for the file output. This is automatically given a
.nc extension if not present. This must not be the same file path as any of the input files. If not supplied, the
default filename is out . nc.

A full example would be:

$ cis aggregate rsutcs:rsutcs_Amon_HadGEMZ—A_sstClim_rlilpl_*.nc:product=NetCDF_Gridded4kernel:mean 1

30 Chapter 6. Aggregation

Community Inter-comparrison Suite Documentation, Release 0.6.5

6.1 Conditional Aggregation

Sometimes you may want to perform an aggregation over all the points that meet a certain criteria - for example, ag-
gregating satellite data only where the cloud cover fraction is below a certain threshold. This is possible by performing
a CIS evaluation on your data first - see Using Evaluation for Conditional Aggregation

6.2 Aggregation Examples

6.2.1 Ungridded aggregation
Aircraft Track

Original data:

$ cis plot TT_A:RF04.20090114.192600_035100.PNI.nc —-xmin -180 —--xmax —-120 —--ymin 0 ——yﬁax 90

Aggregating onto a coarse grid:

$ cis aggregate TT_A:RF04.20090114.192600_035100.PNI.nc x=[-180,-120,3],y=[0,90,3] -o NCAR_RAF-1
$ cis plot TT_A:NCAR_RAF-1.nc

Aggregating onto a fine grid:

$ cis aggregate TT_A:RF04.20090114.192600_035100.PNI.nc x=[180,240,0.3],y=[0,90,0.3] -o|NCAR_RAF-2
$ cis plot TT_A:NCAR_RAF-2.nc

Aggregating with altitude and time:

$ cis aggregate TT_A:RF04.20090114.192600_035100.PNI.nc t=[2009-01-14T19:30,2009-01-15T()3:45,30M], z=
$ cis plot TT_A:NCAR_RAF-3.nc --xaxis time --yaxis altitude

Aggregating with altitude and pressure:

$ cis aggregate TT_A:RF04.20090114.192600_035100.PNI.nc p=[100,1100,20],2z=[0,15000,500] |-o NCAR_RAF-
$ cis plot TT_A:NCAR_RAF-4.nc --xaxis altitude --yaxis air_pressure --logy

MODIS L3 Data

Original data:

‘$ cis plot Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf

Aggregating with a mean kernel:

$ cis aggregate Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf |x=[-180,180,
$ cis plot Cloud_Top_Temperature_Mean_Mean:cloud-mean.nc

Aggregating with the standard deviation kernel:

$ cis aggregate Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf jkernel=stddes
$ cis plot Cloud_Top_Temperature_Mean_Mean:cloud-stddev.nc &

Aggregating with the maximum kernel:

6.1. Conditional Aggregation 31

Community Inter-comparrison Suite Documentation, Release 0.6.5

90

ADC Total Air Temperature

24

16

Latitude
|
|
[w8]
(deg_C)

-24

—-32

~40

oL 1
-180-171-162-153-144 -135-126
Longitude

32 Chapter 6. Aggregation

Community Inter-comparrison Suite Documentation, Release 0.6.5

ADC Total Air Temperature

Latitude

T 171 -162 —153 —144 —135 —126
Longitude

-12

eg_C)

-18 2

-24

-30

—-36

6.2. Aggregation Examples

33

Community Inter-comparrison Suite Documentation, Release 0.6.5

ADC Total Air Temperature

24

16

Latitude
|
|
[w8]
(deg_C)

—24

—-32

~40

T 189 198 207 216 225 234
Longitude

34 Chapter 6. Aggregation

Community Inter-comparrison Suite Documentation, Release 0.6.5

ADC Total Air Temperature

14000

12000

10000

8000

i
[#:4]
(deg_C)

altitude (m)

6000
4000

2000

™ © & o v ™ ©
: 2 B > g Y)
“:L N- fL- ¢ - - *

N
o o o
P o N

T T T
time (days since 1600-01-01 00:00:00)

6.2.

Aggregation Examples 35

Community Inter-comparrison Suite Documentation, Release 0.6.5

ADC Total Air Temperature

24
16
18
T
(a1
L
— i D —
g)
5 | g
|
[
=
- -16
|
|
—24
3 i
10 -32

4000 6000 8000 10000 12000 14000
altitude (m)

2000

36 Chapter 6. Aggregation

Community Inter-comparrison Suite Documentation, Release 0.6.5

290

280

4270

1260

Latitude

4250

(Degrees Kelvin)

—60 240

-120 -60 0 60 120 230
Longitude

220

6.2. Aggregation Examples 37

Community Inter-comparrison Suite Documentation, Release 0.6.5

288

280

Cloud Top Temperature: Mean of Daily Mean

4272

60
=
30 1264 E
£ 0 1256 &
w
5 &
-30 @
=)

—60
=120 —60 0 60 120 180
Longitude

38 Chapter 6. Aggregation

Community Inter-comparrison Suite Documentation, Release 0.6.5

288

280

Cloud Top Temperature: Mean of Daily Mean

4272

60
=
30 1264 E
g 0 1256 ©
w
5 5
-30 @
=)

—60
=120 —60 0 60 120 180
Longitude

6.2. Aggregation Examples 39

Community Inter-comparrison Suite Documentation, Release 0.6.5

$ cis aggregate Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf jkernel=max x:
$ cis plot Cloud_Top_Temperature_Mean_Mean:cloud-max.nc

296

288

Cloud Top Temperature: Mean of Daily Mean

4280

4272

1264

Latitude
(Degrees Kelvin)

256

-120 —-60 0 60 120 180
Longitude

248

240

Aggregating with the minimum kernel:

$ cis aggregate Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf jkernel=min x:
$ cis plot Cloud_Top_Temperature_Mean_Mean:cloud-min.nc

6.2.2 Gridded aggregation

Aggregating 3D model data over time and longitude to produce an averaged measure of variation with latitude:

$ cis aggregate rsutcs:rsutcs_Amon_HadGEM2-A_sstClim_rlilpl_185912-188911.nc:kernel=mean t,x
$ cis plot rsutcs:/home/users/matken/agg-out.nc --xaxis latitude --yaxis rsutcs

This file can be found in:

/group_workspaces/jasmin/cis/griddedftestfdata/cmip5.outputl.MOHC.HadGEMZfES.rcp45.day.%tmos.day.rli

40 Chapter 6. Aggregation

Community Inter-comparrison Suite Documentation, Release 0.6.5

280

270

Cloud Top Temperature: Mean of Daily Mean

60
1260 =
30 s
5 N
D 0 1250 ¢
T o
-30 I E
{2402

~120 —60 0 60 120 180 230

Longitude
220

img/aggregation/gridded_collapse.png

6.2. Aggregation Examples 4

Community Inter-comparrison Suite Documentation, Release 0.6.5

42 Chapter 6. Aggregation

CHAPTER 7

Co-location

One of the key features of the Community Intercomparison Suite (CIS) is the ability to co-locate one or more arbitrary
data sets onto a common set of coordinates. This page briefly describes how to perform co-location in a number of
scenarios.

To perform co-location, run a command of the format:

$ cis col <datagroup> <samplegroup> -o <outputfile>

where:

<datagroup> is a CIS datagroup specifying the variables and files to read and is of the format
<variable>...:<filename>[:product=<productname>] where:

e <variable> is a mandatory variable or list of variables to use.

e <filenames> is a mandatory file or list of files to read from.

e <productname> is an optional CIS data product to use (see Data Products):
See Datagroups for a more detailed explanation of datagroups.

<samplegroup> is of the format <filename>[:<options>] The available options are de-
scribed in more detail below. They are entered in a comma separated list, such as
variable=Temperature,colocator=bin, kernel=mean. Not all combinations of colocator
and data are available; see Available Colocators.

e <filename> is a single filename with the points to colocate onto.

e variable is an optional argument used to specify which variable’s coordinates to use for colocation. If
a variable is specified, a missing value will be set in the output file at every point for which the sample
variable has a missing value. If a variable is not specified, non-missing values will be set at all sample
points unless colocation at a point does not result in a valid value.

* colocator is an optional argument that specifies the colocation method. Parameters for
the colocator, if any, are placed in square brackets after the colocator name, for example,
colocator=box[fill_value=-999,h_sep=1km]. If not specified, a Default Colocator is iden-
tified for your data / sample combination. The colocators available are:

— bin For use only with ungridded data and gridded sample points. Data points are placed in bins
corresponding to the cell bounds surrounding each grid point. The bounds are taken from the gridded
data if they are defined, otherwise the mid-points between grid points are used. The binned points
should then be processed by one of the kernels to give a numeric value for each bin.

— box For use with gridded and ungridded sample points and data. A search region is defined by the
parameters and points within the defined separation of each sample point are associated with the point.

43

Community Inter-comparrison Suite Documentation, Release 0.6.5

The points should then be processed by one of the kernels to give a numeric value for each bin. The
parameters defining the search box are:

* h_sep - the horizontal separation. The units can be specified as km or m (for example
h_sep=1.5km); if none are specified then the default is km.

* a_sep - the altitude separation. The units can be specified as km or m, as for h_sep; if none are
specified then the default is m.

* p_sep - the pressure separation. This is not an absolute separation as for h_sep and a_sep, but
a relative one, so is specified as a ratio. For example a constraint of p_sep = 2, for a point at 10
hPa, would cover the range 5 hPa < points < 20 hPa. Note that p_sep >= 1.

#* t_sep - the time separation. This can be specified in years, months, days, hours, minutes or
seconds using PnYnMnDTnHnMnS (the T separator can be replaced with a colon or a space, but
if using a space quotes are required). For example to specify a time separation of one and a half
months and thirty minutes you could use t _sep=P1M15DT30M. It is worth noting that the units
for time comparison are fractional days, so that years are converted to the number of days in a
Gregorian year, and months are 1/12th of a Gregorian year.

If h_sep is specified, a k-d tree index based on longitudes and latitudes of data points is used to
speed up the search for points. It h_sep is not specified, an exhaustive search is performed for points
satisfying the other separation constraints.

1in For use with gridded source data only. A value is calculated by linear interpolation for each
sample point.

nn For use with gridded source data only. The data point closest to each sample point is found, and
the data value is set at the sample point.

dummy For use with ungridded data only. Returns the source data as the colocated data irrespective
of the sample points. This might be useful if variables from the original sample file are wanted in the
output file but are already on the correct sample points.

Colocators have the following general optional parameters, which can be used in addition to any specific
ones listed above:

fi11l_value - The numerical value to apply to the colocated point if there are no points which
satisfy the constraint.

var_name - Specifies the name of the variable in the resulting NetCDF file.
var_long_name - Specifies the variable’s long name.

var_units - Specifies the variable’s units.

* kernel is used to specify the kernel to use for colocation methods that create an intermediate set of points
for further processing, that is box and bin. The default kernel for box and bin is moments. The built-in
kernel methods currently available are:

moments - Default. This is an averaging kernel that returns the mean, standard deviation and the
number of points remaining after the specified constraint has been applied. This can be used for
gridded or ungridded sample points where the colocator is one of ‘bin’ or ‘box’. The names of the
variables in the output file are the name of the input variable with a suffix to identify which quantity
they represent:

Mean - no suffix - the mean value of all data points which were mapped to that sample grid point
(data points with missing values are excluded)

* Standard Deviation - suffix: _std_dev - The corrected sample standard deviation (i.e. 1 degree
of freedom) of all the data points mapped to that sample grid point (data points with missing
values are excluded)

44

Chapter 7. Co-location

Community Inter-comparrison Suite Documentation, Release 0.6.5

x Number of points - suffix: _num_points - The number of data points mapped to that sample
grid point (data points with missing values are excluded)

— mean - an averaging kernel that returns the mean values of any points found by the colocation method
— nn_t (or nn_time) - nearest neighbour in time algorithm

— nn_h (or nn_horizontal) - nearest neighbour in horizontal distance

— nn_a (or nn_altitude) - nearest neighbour in altitude

— nn_p (or nn_pressure) - nearest neighbour in pressure (as in a vertical coordinate). Note that
similarly to the p_sep constraint that this works on the ratio of pressure, so the nearest neighbour to
a point with a value of 10 hPa, out of a choice of 5 hPa and 19 hPa, would be 19 hPa, as 19/10 < 10/5.

* product is an optional argument used to specify the type of files being read. If omitted, the program will
attempt to determine which product to use based on the filename, as listed at Reading.

<outputfile> is an optional argument specifying the file to output to. This will be automatically given a .nc
extension if not present and if the output is ungridded, will be prepended with cis- to identify it as a CIS
output file. This must not be the same file path as any of the input files. If not provided, the default output
filename is out.nc

A full example would be:

$ cis col rain:"my_data_??.x" my_sample_file:colocator:box[h_sep=50km,t_sep=6000S],kern#l:nn_t -0 my.

Warning: When colocating two data sets with different spatio-temporal domains, the sampling points should be
within the spatio-temporal domain of the source data. Otherwise, depending on the co-location options selected,
strange artefacts can occur, particularly with linear interpolation. Spatio-temporal domains can be reducded in CIS
with Aggregation or Subsetting.

7.1 Available Colocators and Kernels

Colocation type

(data -> sample) Available Colocators | Default Colocator | Default Kernel
Gridded -> gridded 1lin, nn, box lin None
Ungridded -> gridded bin, box bin moments
Gridded -> ungridded nn, lin nn None
Ungridded -> ungridded | box box moments

7.2 Colocation output files

All ungridded co-location output files are prefixed with cis— and both ungridded and gridded data files are suffixed
with . nc (so there is no need to specify the extension in the output parameter). This is to ensure the cis data product
is always used to read co-located ungridded data.

It is worth noting that in the process of colocation all of the data and sample points are represented as 1-d lists, so any
structural information about the input files is lost. This is done to ensure consistency in the colocation output. This
means, however, that input files which may have been plotable as, for example, a heatmap may not be after co-location.
In this situation plotting the data as a scatter plot will yield the required results.

Each co-located output variable has a history attributed created (or appended to) which contains all of the parameters
and file names which went into creating it. An example might be:

7.1. Available Colocators and Kernels 45

Community Inter-comparrison Suite Documentation, Release 0.6.5

double mass_fraction_of_cloud_liquid_water_in_air (pixel_number) ;

mass_fraction_of_cloud_liquid_water_in_air:history = "Colocated onto sampling from:
"variable: mass_fraction_of_cloud_liquid_water_in_air\n",
"with files: [\'/test/test_files/xenida.pah9440.nc\']\n",
"using colocator: DifferenceColocator\n",
"colocator parameters: {}\n",
"constraint method: None\n",
"constraint parameters: None\n",
"kernel: None\n",
"kernel parameters: None"
mass_fraction_of_cloud_liquid_water_in_air:shape = 30301 ;
double difference (pixel_number) ;

7.3 Basic colocation design

The diagram below demonstrates the basic design of the co-location system, and the roles of each of the components.
In the simple case of the default co-locator (which returns only one value) the Colocator loops over each of the sample
points, calls the relevant constraint to reduce the number of data points, and then the kernel which returns a single
value which the co-locator stores.

& N

Default Co-locator

For each sample point:

Data points Single value

Kernel

\ /

It is useful to understand that when a sample variable is specified that contains masked values (those with a fill_value)
this is not taken into account when creating the list of sample points. E.g. the full list of coordinates is used from the
file, regardless of the values of the sample variable.

Constraint

On the contrary when a data variable is read in (which is to be co-located onto the sample) any masked values are
ignored. That is, any value in the data variable which is equal to the fill_value is not considered for colocation, as it is
treated as an empty value.

On their own each of these statements seem sensible, but together may lead to unexpected results if, for example, a
variable from a file is co-located onto itself using the DefaultColocator. In this situation, the sampling from the file
is used to determine the sample points regardless of fill_value, and the variable is co-located on to this (ignoring any
fill_values). This results in an output file where the masked (or missing) values are ‘filled-in’ by the co-locator using
whichever kernel was specified - see Figure 2a below. Using the DummyColocator simply returns the original masked
values as no filling in is done (see 2b), and similarly for the difference co-locator when co-located onto itself the
difference variable retains the mask as a non-value minus any other number is still a non-value (see 2c).

46 Chapter 7. Co-location

[\'/test/t«

Community Inter-comparrison Suite Documentation, Release 0.6.5

1.50

:ron for both ocean (best) and land (corrected) with best quali

1.20

41.05

0.90

0.75

Latitude

40.60

0.45

0.30

0.15

Longitude

Fig. 7.1: Figure 2a

{(None)

dafga (Quality fl:

7.3. Basic colocation design

47

Community Inter-comparrison Suite Documentation, Release 0.6.5

1.50

ron for both ocean (best) and land (corrected) with best qualif¥data(Quality fl:

1.20

41.05

0.90

0.75

Latitude
(None)

40.60

0.45

0.30

0.15

Longitude

Fig. 7.2: Figure 2b

48 Chapter 7. Co-location

Community Inter-comparrison Suite Documentation, Release 0.6.5

Difference between given variable and sampling value

Latitude
(None)

Longitude

Fig. 7.3: Figure 2¢

7.3. Basic colocation design

Community Inter-comparrison Suite Documentation, Release 0.6.5

7.4 Writing your own plugins

The colocation framework was designed to make it easy to write your own plugins. Plugins can be written to create
new Kernels, new constraint methods and even whole colocation methods. See Colocation Design for more details

50 Chapter 7. Co-location

CHAPTER 8

Colocation Examples

8.1 Ungridded to Ungridded Colocation Examples

8.1.1 Ungridded data with vertical component

First subset two Caliop data files:

$ cis subset Temperature:CAL_LID_L2_05kmAPro-Prov-V3-01.2009-12-31T23-36-08ZN.hdf x=[170,180],y=[60,
$ cis subset Temperature:CAL_LID_L2_05kmAPro-Prov-V3-01.2010-01-01T00-22-282zD.hdf x=[170,180],y=[60,

Results of subset can be plotted with:

$ cis plot Temperature:cis-2009.nc —--itemwidth 25 --xaxis time --yaxis air_pressure
$ cis plot Temperature:cis-2010.nc —-itemwidth 25 --xaxis time --yaxis air_pressure

Then colocate data, and plot output:

$ cis col Temperature:cis-2010.nc cis-2009.nc:colocator=box|[p_sep=1.1],kernel=nn_p
$ cis plot Temperature:cis-out.nc —-itemwidth 25 --xaxis time --yaxis air_pressure

The output for the two subset data files, and the colocated data should look like:

51

Community Inter-comparrison Suite Documentation, Release 0.6.5

T T T T T T T _66.0
13.1[]
Ll Il —665
13.2[]
~ 0 g0000,, LT P 4-67.0
[
< 13.3F °] o)
@ *ds L T {—-67.5 %
3 @
wn [] Pt
2 13.4 | 6802
_
o]
| M
£ 135} 1 —68.5
13.6} 1 —69.0
bl LT T T P
13.7F *] —-69.5
[T ™ | | I I | | |
~P A v » o “° S
.();\. .(7;\. :'?;\. :');\. .(7;\. .();\. :);b.
%- %- %- %- %- %- %-
1 1 1 " 1 1 "
sy sy Ay Ay Ay Ay sy
~¥ ~V NV N ~Y NV N
& & & & & & &
®) Q S Q 8 o Q
o 5")) 5" G 1

time (days since 1600-01-01 00:00:00)

52 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

13.30

13.35

13.40

air_pressure (hPA)

b []
m
. []
.“
L 900%aes
[]
L L]
.m
L]
L . 1 ! ! 1
2 2 A 5 1
I M] “
B 0» 5{‘» B . p'l’ B
N 9 N4 N4 N
> & 3
fvd\p o X o X o~ X
S 8 S
» D D

time (days since 1600-01-01 00:00:00)

—-53.7

=54.0

—54.3

th

I

(=]
(degrees C)

—-54.9

—55.2

=55.5

8.1. Ungridded to Ungridded Colocation Examples

53

Community Inter-comparrison Suite Documentation, Release 0.6.5

'Ssesscnce,
131+ o - —-53.75
Ll LT 1T P, peed
=54.00
13.2¢ g
gg 000000, e**%scsccne’ 15495
< 13.3F] o
E *Bs Ll LT T T 4—-54.50 %
3]
% 134+] 1-5475 o
e Q
o =
='135[.] ~55.00
© LAl TTT T W
—55.25
13.6 s
L
hd T 11T P9 —55 50
13.7 * g
[TP I I 1 1 I I I -85.75
Yooy w2 S
53 3 53 53 3 N P
(b- (b- (b- (b- (&- (&- (b-
W v v v W 4" v
,-,.)‘\v ,-,.;\v ,-,;\, "’;\’ ,-,;\v ,-,;& "’;\’
~Y ~V ~Y 4 ~V ~V 4
d & & & & & &
(%) (%)) QO () %) O
YV YV YV YV YV YV v

time (days since 1600-01-01 00:00:00)

File Locations

The files used above can be found at:

’/group_workspaces/jasmin/cis/data/caliop/CAL—LID—LZ—O5km—APro

8.1.2 Ungridded data colocation using k-D tree indexing

These examples show the syntax for using the k-D tree optimisation of the separation constraint. The indexing is only
by horizontal position.

Nearest-Neighbour Kernel

The first example is of Aerosol CCI data on to the points of a MODIS L3 file (which is an ungridded data file but with
points lying on a grid).

Subset to a relevant region:

$ cis subset AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02/02.nc x=[-6,
$ cis subset Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf x=[-6,0],y=[20,:

The results of subsetting can be plotted with:

54 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

$ cis plot AOD550:cis-A0OD550n_3.nc —--itemwidth 10
$ cis plot Cloud_Top_Temperature_Mean_ Mean:cis-MOD08n_3.nc —-itemwidth 20

These should look like:

a%ra::sol optical thickness at 550 nm

T 36

3.2

Latitude
(1)

1.2

0.8

0.4

Longitude

8.1. Ungridded to Ungridded Colocation Examples 55

Community Inter-comparrison Suite Documentation, Release 0.6.5

Cloud Top Temperature: Mean of Daily Mean

264
3 L]
260
L] L]
256
27+ g
L L] L] L |
252 =
=
Q{ b . . q @
g 248
e
2 g
S L L] 55,
24|] 244 8
L L] -
240
L q
236
21+ . 232

54 —45 —36 2.7 -1.8 0.9
Longitude

To colocate with the nearest-neighbour kernel use:

‘$ cis col Cloud_Top_Temperature_Mean_Mean:cis-MOD08n_3.nc ciszODSSOn_3.nc:colocator=bo%[h_sep=150]J

This can be plotted with:

’$ cis plot Cloud_Top_Temperature_Mean_Mean:cis-MOD08_on_AOD550_nn_kdt.nc —--itemwidth 10‘

The sample points are more closely spaced than the data points, hence a patchwork effect is produced.

56 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

Cloud ;I'(?p Temperature: Mean of Daily Mean
LA L B I 71 Y
! i] 264
it it
i Y
260
256
27 it ;
i 1252 =
£
Q Q
E E 1248
= T o
3 i 5
24 L HiTH - $Hi8E3 4244 g
HERHER 240
fitiistaasaataasy
HTHH T
FEReTRrEETE IR SR EeS
il 1 236
-
232

-u L 1 1 | i
-5.4-45-3.6-2.7-1.8 -0.9
Longitude

Colocating the full Aerosol CCI file on to the MODIS L3 with:

$ cis col AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02|nc MODO8_E3.]

gives the following result

8.1. Ungridded to Ungridded Colocation Examples 57

Community Inter-comparrison Suite Documentation, Release 0.6.5

4.8

4.2
aerosol optical thickness at 550 nm

Latitude

-120 —60 0 60 120 1.2

Longitude

0.6

Mean Kernel

This example is similar to the first nearest-neighbour colocation above:

’$ cis col Cloud_Top_Temperature_Mean_Mean:cis-MOD08n_3.nc cis—AOD550n_3.nc:colocator:bo%[h_sep:751,ke

Plotting this again gives a granular result:

‘$ cis plot Cloud_Top_Temperature_Mean_Mean:cis-MODO08_on_AODS550_hsep_75km.nc 77itemwidth‘10

58 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

Cloud ;I'(?p Temperature: Mean of Daily Mean
AR i i 264

. 1 260
s,

256
27 |

4252

1248

Latitude

24|

(Degrees Kelvin)

21}

-u L 1 1 | i
-5.4-45-3.6-2.7-1.8 -0.9
Longitude

This example colocates the Aerosol CCI data on to the MODIS L3 grid:

|$ cis col AOD55O:2008061209382leSACCI7L2P_AEROSOL*ALL*AATSR_ENVISAT*ORAC_328557fV02.02lnc MODO08_E3.

This can be plotted as follows, with the full image and zoomed into a representative section show below:

‘$ cis plot AOD550:cis—-AOD550_on_MOD08_kdt_hsep_50km_full.nc —--itemwidth 50 |

8.1. Ungridded to Ungridded Colocation Examples 59

Community Inter-comparrison Suite Documentation, Release 0.6.5

4.8

aerosol optical thickness at 550 nm 4.2

Latitude

12

-120 —-60 0 60 120

Longitude 0.6

4.8

aerosol optical thickness at 550 nm 4.2

60 ' ' ' ' o

3 ;j 3.6
541 g?

3.0

44

i

Latitude
H
)1
[
[\
i

'S
N
T

36| P-4 : J
-+ 4 1.2

-27 -18 -9 0 9 18 27
Longitude

0.6

The reverse colocation can be performed with this command (taking about 7 minutes):

$ cis col Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf 20080¢12093821—ESA(

Plotting it with this command gives the result below:

60 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

$ cis plot Cloud_Top_Temperature_Mean_Mean:cisfMODO8_on_AOD5SO_kdt_hsep_lOOkm_var_full.ﬁc

Cloud Top Temperature: Mean of Daily Mean 288
R |_.=. T T
F Y o

S ’;S_“ = 280
¢ - & 2712 ¢
S s |
. y }
o 264
. D &

n

Latitude
(Degrees Kelv

B\ X1 |
T SR~ L 256
'
I} I} 1 1 I} I‘?l
0 30 60 90 120 150 240

Longitude

Omitting the variable option in the sample group gives colocated values over a full satellite track (taking about 30
minutes):

‘$ cis col Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf 20080¢12093821—ESA(

Plotting it with this command gives the result below:

‘$ cis plot Cloud_Top_Temperature_Mean_Mean:cis-MOD08_on_AOD550_kdt_hsep_100km_full.nc ‘

8.1. Ungridded to Ungridded Colocation Examples 61

Community Inter-comparrison Suite Documentation, Release 0.6.5

Cloud Top Temperature: Mean of Daily Mean 288
T T : P——
?F? : GFF’ oy ‘-1,..-..‘ »
= ¥ -
L - = : 1280
60 . & Fet ,;-i—"‘:
: ¢ - > 1272 =
-
30 S - 2
g " “) | g
2 \ 5 1264 @
i . 6‘\ g
S () 1\' "h ’5’
A ol
or \H § e~] | {2562
-
-30} Q | 248
I} I} 1 1 I} ml
0 30 60 90 120 150 240

Longitude

File Locations

The files used above can be found at:

/group_workspaces/jasmin/cis/jasmin_cis_repo_test_files/
20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc
MODO08_E3.A2010009.005.2010026072315.hdf

8.2 Examples of co-location of ungridded data on to gridded

8.2.1 Simple Example of Aerosol CCI Data on to a 4x4 Grid

This is a trivial example that co-locates on to a 4x4 spatial grid at a single time:

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_rl1lilpl_20051201-20151130.nc x=[0,2],y=[24,26] /t=[2008-06-1:
$ cis subset AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02/02.nc x=[0,2
$ cis col AOD550:cis—-AOD550n_1.nc tas_1l.nc:colocator=bin[fill_value=-9999.0],kernel=mean —-o AOD550_o1

$ cis plot AOD550:A0D550_on_tas_1.nc

62 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

Note that for ungridded gridded co-location, and the colocator must be one bin or box and a kernel such as “mean”
must be used.

The plotted image looks like:

1.02
aerosol optical thickness at 550 nm
0.96
26.0 !
25 6 1 H0.90
i H0.84

225.2

E; S

]

8248 . H0.78
24.4 1 0.72
24.0 1 0.66

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Longitude 0.60

8.2.2 Aerosol CCl with Three Time Steps

This example involves co-location on to a grid with three time steps. The ungridded data all has times within the
middle step, so the output has missing values for all grid points with the time equal to the first or third value. This can
be seen using ncdump:

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_rlilpl_20051201-20151130.nc x=[-6,-.0001],y=[20,30]1,t=[200¢
$ cis subset AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02/02.nc x=[-6,
$ cis col AOD550:cis-AOD550n_3.nc tas_3day.nc:colocator=bin[fill_value=-9999.0],kernel=mean -o AODS55I

$ ncdump AOD550_on_tas_3day.nc |less

8.2.3 Aerosol CCI with One Time Step

This is as above but subsetting the grid to one time step so that the output can be plotted directly:

8.2. Examples of co-location of ungridded data on to gridded 63

Community Inter-comparrison Suite Documentation, Release 0.6.5

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_rlilpl_20051201-20151130.nc t=[2008-06-12T1,2008-06-12] -o
$ cis col AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02|nc tas_2008-
$ cis plot AOD550:A0D550_on_tas_lday.nc

cis plot AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc
$ cis plot tas:tas_2008-06-12.nc

Ur

These are the plots before and after co-location:

4.8

aerosol optical thickness at 550 nm

= o == __ 4.2
Yo * ":Sﬁ —
3.6
) W G
« P
) 13.0
w ~3 ¥ .
= 124%
5 h 3 /Gi‘ﬂ
\ g't 4
Sad S iﬁg 1.8
] 1.2
1 1 1 1 1 Itjl
0 30 60 90 120 150 0.6
Longitude

64 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

4.0
90 aerosol optical thickness at 550 nm 3.5
6‘0 N 3.0
30
o 12.5
=
2 0 S
et
g 12.0
-30
-60 1.5
_90 Il 1 Il 1 Il 1 O
0 60 120 180 240 300 360 -
Longitude
0.5

8.2.4 Example with NCAR RAF Data

This example uses the data in RF04.20090114.192600_035100.PNLnc. =~ However, this file does not have
standard_name or units accepted as valid by Iris. These were modified using ncdump and ncgen, giving
RF04_fixed AO2CO2.nc:

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_rl1ilpl_20051201-20151130.nc t=[2009-01-14T1,2009-01-14] -o

$ cis col AO2CO02:RF04_fixed_A02C02.nc tas_2009-01-14.nc:colocator=bin[fill_value=-9999.(0], kernel=meas

$ cis plot AO2CO2:RF04_on_tas.nc:product=NetCDF_Gridded

These are the plots before and after co-location:

8.2. Examples of co-location of ungridded data on to gridded 65

Community Inter-comparrison Suite Documentation, Release 0.6.5

AO2 CO2
60
460
54+ -
) 440
48 1 4420
] 414005
S a2f . g
-
= o
5 4380 2
36} .
< 360
30} . 340
320
24 B] m

~162 -156 -150
Longitude

66 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

400

392

384

Latitude
L
~J
o
(1/10e6)

368

360

_go | I 1 L 1
0 60 120 180 240 300 360

Longitude
352

8.2.5 Cloud CCI with One Time Step

This is analogous to the Aerosol CCI example:

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_rlilpl_20051201-20151130.nc t=[2008-06-20T1,2008-06-20] -o
$ cis col cwp:20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1l.0.nc tas_2008-06-20.nc:colo

$ cis plot cwp:Cloud_CCI_on_tas.nc
$ cis plot cwp:20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc

These are the plots before and after co-location:

8.2. Examples of co-location of ungridded data on to gridded 67

Community Inter-comparrison Suite Documentation, Release 0.6.5

1933.2

12

6
12.0
© N
2 116 £
50 s
11.2

8l 8 87 90 93 96 99 102
Longitude

68 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

le3
1.35
1.20
90 cloud liquid water path
T T T T T n 1.05
60
10.90
30
3 0.75 N
2 0 T E
et
5 2
— _30 40.60
—60 0.45
_90 Il 1 Il 1 Il
0 60 120 180 240 300 360 0.30
Longitude
0.15
0.00

8.2.6 File Locations

The files used above can be found at:

/group_workspaces/jasmin/cis/jasmin_cis_repo_test_files/
20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc
20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc
RF04.20090114.192600_035100.PNI.nc

/group_workspaces/jasmin/cis/example_data/

RF04_fixed_ _A02CO2.nc

/group_workspaces/jasmin/cis/gridded-test—-data/cmip5.outputl.MOHC.HadGEM2-ES.rcp45.day.atmos.day.rli
tas_day_HadGEM2-ES_rcp45_rlilpl_20051201-20151130.nc

8.3 Examples of Gridded to Gridded Colocation

8.3.1 Example of Gridded Data onto a Finer Grid

First to show original data subset to a single time slice:

‘$ cis subset rsutcs:rsutcs_Amon_HadGEM2-A_sstClim_rlilpl 185912-188911.nc t=[18597127121 -0 subl

Plot for subset data:

8.3. Examples of Gridded to Gridded Colocation 69

Community Inter-comparrison Suite Documentation, Release 0.6.5

‘$ cis plot rsutcs:subl.nc

Colocate onto a finer grid, which was created using nearest neighbour:

$ cis col rsutcs:rsutcs_Amon_HadGEM2-A_sstClim_rlilpl_185912-188911.nc dummy_high_res_cuybe_-180_180.:
$ cis subset rsutcs:2.nc t=[1859-12-12] -o sub2
$ cis plot rsutcs:sub2.nc

Colocate onto a finer grid, which was created using linear interpolation:

$ cis col rsutcs:rsutcs_Amon_HadGEM2-A_sstClim_rlilpl_185912-188911.nc dummy_high_res_cube_-180_180.:
$ cis subset rsutcs:3.nc t=[1859-12-12] -0 sub3
$ cis plot rsutcs:sub3.nc

Before, after nearest neighbour and after linear interpolation:

360

320

TOA Outgoing Clear-Sky Shortwave Radiation 580

90

240

Latitude

180
Longitude

70 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

360

320

TOA Outgoing Clear-Sky Shortwave Radiation

90 1280
60 1240
30
8 1200 ™
Z o0 £
—
@ =
- _30 1160 =
120

-90
—-180 -120 —-60 0 60 120 180

Longitude

8.3. Examples of Gridded to Gridded Colocation 71

Community Inter-comparrison Suite Documentation, Release 0.6.5

360

320

TOA Outgoing Clear-Sky Shortwave Radiation

90 4280
60 4240
30
8 1200 ™
Z o0 £
]

T =
- _30 4160 =~
—60 120

-90
—-180 -120 —60 0 60 120 180 80
Longitude
40
0

8.3.2 4D Gridded Data with latitude, longitude, air_pressure and time to a New Grid

‘$ cis col temp:aerocom.INCA.A2.RAD-CTRL.monthly.temp.2006-fixed.nc dummy_low_res_cube_4¢.nc:colocatOJ

Note the file aerocom.INCA.A2.RAD-CTRL.monthly.temp.2006-fixed.nc has the standard name of
presnivs changed to air_pressure, in order to be read correctly.

Slices at Different Pressures

cis subset temp:4D-col.nc t=[2006-01],2z=[100000] -o sub9
cis plot temp:sub9.nc

cis subset temp:4D-col.nc t=[2006-01],z=[0] -o sublO

cis plot temp:sublO.nc

w4 A

72 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

304

296

Air temperature

288
1280

212 ¢

Latitude

264

256

180
Longitude 248

120

240

8.3. Examples of Gridded to Gridded Colocation 73

Community Inter-comparrison Suite Documentation, Release 0.6.5

304

296

Air temperature

1288

1280

272 ¥

Latitude

264

256
0 60 120 180 240 300 360

Longitude
248

Pressure against time

cis subset temp:4D-col.nc x=[0],t=[2006-01] -o subll

cis plot temp:subll.nc --xaxis latitude --yaxis air_pressure
cis subset temp:aerocom.INCA.A2.RAD-CTRL.monthly.temp.2006-fixed.nc x=[0],t=[2006-01] |-o subl2
cis plot temp:subl2.nc --xaxis latitude --yaxis air_pressure

Uy 0 r

74 Chapter 8. Colocation Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

Air temperature

300

20000 285
270
&€ 40000
v 255
3 —
0 3
2
_! 60000 240
s
225
80000
210
100000 : 195
-90 —-60 -30 0 30 60 90

latitude (degrees)

8.3. Examples of Gridded to Gridded Colocation 75

Community Inter-comparrison Suite Documentation, Release 0.6.5

Air temperature

300

285
20000

270

40000
255

(K)

240

60000

air pressure (Pa)

225

80000
210

100000 195

-90 —60 =30 0 30 60 a0
latitude (degrees)

8.3.3 File Locations

The files used above can be found at:

‘ /group_workspaces/jasmin/cis/sprint_reviews/SR4-IB/gridded_col?2

76 Chapter 8. Colocation Examples

CHAPTER 9

Plotting

Plotting is straightforward:

$ cis plot variable:filenames

This will attempt to locate the variable variable in all of the specified £ilenames, work out its metadata, such as
units, labels, etc. and the appropriate chart type to plot, so that a line graph is used for two dimensional data, a scatter
plot is used for three dimensional ungridded data and a heatmap for three dimensional gridded data. Other types of
chart can be specified using the ——t ype option. Available types are:

line asimple line plot, for three dimensional data the third variable is represented by the line colour
scatter a scatter plot, for three dimensional data the third variable is represented by the maker

heatmap a heatmap especially suitable for gridded data

Warning: Basemap versions <= 1.0.7 have known issues when plotting heatmaps, particularly when using
——xmin or ——xmax options. Use a newer version if available, otherwise check your output for validity, espe-
cially around the meridians.”

contour a standard contour plot, see contour options
contourf a filled contour plot, see contour options
histogram3d

histogram2d

comparativescatter allows two variables to be plotted against each other, specified as cis plot
variablel:filenamel variable2:filename2 --type comparativescatter

overlay a collection of plots overlaid on one another, see overlay plots
scatteroverlay aheatmap overlayed with a scatter plot, see scatter-overlay plots

Note that filenames is a non-optional argument used to specify the files to read the variable from. These can be
specified as a comma seperated list of the following possibilities:

1. A single filename - this should be the full path to the file
2. A single directory - all files in this directory will be read

3. A wildcarded filename - A filename with any wildcards compatible with the python module glob, so that *, ?
and [] can all be used. For example /path/to/my/testxfile_[0-9].

Note that when using option 2, the filenames in the directory will be automatically sorted into alphabetical order.
When using option 3, the filenames matching the wildcard will also be sorted into alphabetical order. The order of the
comma separated list will however remain as the user specified, e.g.:

77

Community Inter-comparrison Suite Documentation, Release 0.6.5

‘ $ cis plot $var:filenamel, filename2,wildcxrd, /my/dir/, filename3

would read filenamel, then £ilename?2, then all the files that match wildc*rd (in alphabetical order), then all
the files in the directory /my/dir/ (in alphabetical order) and then finally filename3.

9.1 Plot Options

There are a number of optional arguments, which should be entered as a comma separated list after the mandatory
arguments, for example variable: filename:product=Cis, edgecolor=black. The options are:

color colour of markers, e.g. for scatter plot points or contour lines, see Available Colours and Markers
cmap colour map to use, e.g. for contour lines or heatmap, see Available Colours and Markers

cmin the minimum value for the colourmap

cmax the maximum value for the colourmap

edgecolor colour of scatter marker edges (can be used to differentiate scatter markers with a colourmap from the
background plot)

itemstyle shape of scatter marker, see Available Colours and Markers

label name of datagroup for the legend

product the data product to use for the plot

Additional datagroup options for contour plots only:

contnlevels the number of levels for the contour plot

contlevels alist of levels for the contour plot, e.g. contlevels=[0,1,3,10]
contlabel options are true or false, if true then contour labels are shown
contwidth width of the contour lines

contfontsize size for labels on contour plot

Note that 1abel refers to the label the plot will have on the legend, for example if a multi-series line graph or scatter
plot is plotted. To set the labels of the axes, use ——xlabel and ——ylabel. ——cbarlabel can be used to set the
label on the colour bar.

The axes can be specified with ——xaxis and —-yaxis. Gridded data supports any coordinate axes available in the
file, while ungridded data supports the following coordinate options (if available in the data):

e latitude

* longitude

* time

* altitude

* air_pressure

* variable - the variable being plotted

If the product is not specified, the program will attempt to figure out which product should be used based on the
filename. See data-products to see a list of available products and their file signatures, or run cis plot -h.

78 Chapter 9. Plotting

Community Inter-comparrison Suite Documentation, Release 0.6.5

9.2 Saving to a File

By default a plot will be displayed on screen. To save it to an image file instead, use the ——output option. Available
output types are png, pdf, ps, eps and svg, which can be selected using the appropriate filename extension, for example
——output plot.svag.

9.3 Plot Formatting

There are a number of plot formatting options available:
——xlabel The label for the x axis

—-ylabel The label for the y axis

——cbarlabel The label for the colorbar
——xtickangle The angle for the ticks on the x axis
—-ytickangle The angle for the ticks on the y axis
——title The title of the plot

——itemwidth The width of an item. Unit are points in the case of a line, and points squared in the case of a scatter
point

——fontsize The size of the font in points

——cmap The colour map to be used when plotting a 3D plot, see Available Colours and Markers
——height The height of the plot, in inches

——width The width of the plot, in inches

——xbinwidth The width of the histogram bins on the x axis
——ybinwidth The width of the histogram bins on the y axis
——cbarorient The orientation of the colour bar, either horizontal or vertical
—-nocolourbar Hides the colour bar on a 3D plot

——grid Shows grid lines

——plotwidth width of the plot in inches

—-plotheight height of the plot in inches

——cbarscale this can be used to change the size of the colourbar when plotting and defaults to 0.55 for vertical
colorbars, 1.0 for horizontal.

——coastlinescolour The colour of the coastlines on a map, see Available Colours and Markers

—-nasabluemarble Use the NASA Blue Marble for the background, instead of coastlines, when doing lat-lon
plots

9.4 Setting Plot Ranges

The arguments ——xmin, ~—xmax, ——xstep, ——ymin, ——ymax, ——ystep, ——vmin, -—vmax, ——vstep can be
used to specify the range of values to plot, where x and y correspond to the axes and v corresponds to the colours.

9.2. Saving to a File 79

Community Inter-comparrison Suite Documentation, Release 0.6.5

When the arguments refer to dates or times, they should be in the format YYYY-MM-DDThh :mm: ss, where the time
is optional. A colon or a space is also a valid date and time separator (if using a space quotes are necessary).

The step arguments are used to specify the tick spacing on the axes and vstep is used to specify the tick spacing
on the colorbar.

When the step arguments refer to an amount of time, they should be in the ISO 8061 format PnYnMnDTnHnMnS,
where any particular time group is optional, case does not matter, and T can be substituted for either a colon or a space
(if using a space quotes are necessary).

For example, to specify a tick spacing of one month and six seconds on the x axis, the following argument should be
given: ——xstep 1m6S

Note: If a value is negative, then an equals sign must be used, e.g. ——xmin=-5.
To plot using a log scale:

——logx The x axis will be plotted using a log scale of base 10

——logy The y axis will be plotted using a log scale of base 10

—=logv The values (colours) will be plotted using a log scale of base 10

9.5 Overlaying Multiple Plots

Using ——type overlay allows multiple files to be specified on the command line to be plotted, each with its
own type, which is specified as e.g. type=heatmap, along with the other datagroup options. Currently sup-
ported plot types are heatmap, contour, contourf and scatter. An additional datagroup option available
is transparency, which allows the transparency for a layer to be set. transparency take a value between 0
and 1, where 0 is completely opaque and 1 fully transparent.

For example, to plot a heatmap and a contour plot the following options can be used:

cis plot varl:filel:type=heatmap var2:file2:type=contour,color=white —--type overlay ——piotwidth 20 -

Note that the first file specified is treated in a special way, from this the default plot dimensions are deduced, and the
colorbar displayed will be for this datagroup only.

9.6 Scatter Overlay Plots

Note: Note that scatteroverlay is to be depreciated, as the overlay option will allow a more general method for
overlaying multiple datasets

Three types of plot overlay are currently available:
* Overlaying several line graphs
» Overlaying several scatter plots
* Overlaying a heatmap with several scatter graphs

To overlay several line graphs or scatter plots, simply use the plot command as before, but simply specify multiple
files and variables, e.g.:

$ cis plot $varl:$filenamel:edgecolor=black $var2:$filename2:edgecolor=red

80 Chapter 9. Plotting

Community Inter-comparrison Suite Documentation, Release 0.6.5

To plot two variables from the same file, simply use the above command with ** $filenamel “* in place of ‘“ $filename2

(3

To overlay a heatmap with several scatter graphs, use the following command:

$ cis plot $varl:$filenamel:label=labell $var2:$filename2:colorzcolourZ,itemstyle=styleé,labelzlabell

Where ‘¢ $filenamel “* refers to the file containing the heatmap data and the other two filenames refer to the files
containing the scatter data.

If the scatter data is 3 dimensional, then the colour argument can be omitted and the data will be plotted using the
same colour map as the heatmap. This can be overridden by explicitly including the colour argument.

9.7 Available Colours and Markers

CIS recognises any valid html colour, specified using its name e.g. red for options such as item colour (line/scatter
colour) and the colour of the coast lines.

A list of available colour maps for 3D plots, such as heatmaps, scatter and contour plots, can be found here: colour
maps.

For a list of available scatter point styles, see here: scatter point styles.

9.7. Available Colours and Markers 81

http://www.w3schools.com/html/html_colornames.asp
http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps
http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps
http://matplotlib.org/api/markers_api.html#module-matplotlib.markers

Community Inter-comparrison Suite Documentation, Release 0.6.5

82 Chapter 9. Plotting

cHAPTER 10

Evaluation

The Community Intercomparison Suite allows you to perform general arithmetic operations between different vari-
ables using the ‘eval’ command. For example, you might want to interpolate a value between two variables.

Note: All variables used in a evaluation must be of the same shape in order to be compatible, i.e. the same number
of points in each dimension, and of the same type (Ungridded or Gridded). This means that, for example, operations

between different data products are unlikely to work correctly - performing a colocation or aggregation onto a common
grid would be a good pre-processing step.

Warning: This CIS command performs a Python eval() on user input. This has the potential to be a security risk
and before deploying CIS to any environment where your user input is untrusted (e.g. if you want to run CIS as a
web service) you must satisfy yourself that any security risks have been mitigated. CIS implements the following
security restrictions on the expression which is evaluated:
» The eval() operates in a restricted namespace that only has access to a select handful of builtins (see expr
below) - so __import__, for example, is unavailable.
* The only module available in the namespace is numpy.
* Any expression containing two consecutive underscores (__) is assumed to be harmful and will not be
evaluated.

The evaluate syntax looks like this:

$ cis eval <datagroup>... <expr> <units> [-o [<output_var>:]<outputfile>] [-—-attributes |<attributes>

where square brackets denote optional commands and:

<datagroup> is amodified CIS datagroup of the format <variable>[=<alias>]...:<filename>[:product=<produc
One or more datagroups should be given.

e <variable> is a mandatory variable or list of variables to use.

e <alias> is an optional alternative variable name to use in place of the name given in the file. As you
will see in the expression section, the variable names given will need to be valid python variable names,
which means:

1. They may use only the characters [A-Z], [a-z] and numbers [0-9] provided they do not start
with a number

2. The only special character which may be used is the underscore (_) - but don’t use two
consecutively (see security note)

3. Don’t use any of the reserved python keywords such as class or and as variable names
(they’re OK if they’re only part of a name though).

83

https://docs.python.org/2/library/functions.html#eval
http://www.numpy.org/
https://docs.python.org/2/reference/lexical_analysis.html#keywords

Community Inter-comparrison Suite Documentation, Release 0.6.5

4. Avoid using names of python builtins like max or abs (again, it’s OK if they’re only part of
a name).

So if the variable name in your file violates these rules (e.g. ‘550-870Angstrom’) use an alias:
550-870Angstrom=a550t0870
e <filename> is a mandatory file or list of files to read from.
e <productname> is an optional CIS data product to use (see Data Products):
See Datagroups for a more detailed explanation of datagroups.

<expr> is the arithmetic expression to evaluate; for example: variablel+variable?2. Use the following basic
rules to get started:

1. Use the variable names (or aliases) as given in the datagroups (they’re case-sensitive) - don’t
enclose them in quotes.

2. If your expression contains whitespace, you’ll need to enclose the whole expression in single or
double quotes.

3. Construct your expression using plus +, minus —, times *, divide / , power % (note that
you can’t use ~ for exponents, like you typically can in spreadsheets and some other computer
languages). Parentheses () can be used to group elements so that your expression is evaluated in the
order you intend.

If you need more functionality, you’re encountering errors or not getting the answer you expect then you should
consider the following.

1. This expression will be evaluated in Python using the eval() method (see security note), so the
expression must be a valid Python expression.

2. The only Python methods available to you are a trimmed down list of the python builtins: ‘abs’,
‘all’, ‘any’, ‘bool’, ‘cmp’, ‘divmod’, ‘enumerate’, ‘filter’, ‘int’, ‘len’, ‘map’, ‘max’, ‘min’, ‘pow’,
‘range’, ‘reduce’, ‘reversed’, ‘round’, ‘sorted’, ‘sum’, ‘xrange’, ‘Zip’.

3. The numpy module is available, so you can use any of its methods e.g.
numpy .mean (variablel).

4. For security reasons, double underscores (___) must not appear anywhere in the expression.
5. The expression must produce an output array of the same shape as the input variables.

6. The expression is evaluated at the array level, not at the element level - so the vari-
ables in an expression represent numpy arrays, not individual numeric values. This means that
numpy.mean ([varl,var2]) will give you a combined average over the whole of both arrays
(i.e. a single number, not an array), which would be invalid (consider the previous rule). However,
you could add the mean (over the whole array) of one variable to every point on a second variable by
doing varl + numpy.mean (var?2).

Note: CIS eval command will flatten ungridded data so that structure present in the input files will be ignored. This
allows you to compare ungridded data with different shapes, e.g. (3,5) and (15,)

<units> is a mandatory argument describing the units of the resulting expression. This should be a CF compliant
units string, e.g. "kg m”-3". Where this contains spaces, the whole string should be enclosed in quotes.

<outputfile> is an optional argument specifying the file to output to. This will be automatically given a .nc
extension if not present and if the output is ungridded, will be prepended with cis— to identify it as a CIS
output file. This must not be the same file path as any of the input files. If not provided, the default output
filename is out.nc

84 Chapter 10. Evaluation

https://docs.python.org/2/library/functions.html#built-in-funcs
https://docs.python.org/2/library/functions.html#eval
https://docs.python.org/2/library/functions.html#built-in-funcs
http://www.numpy.org/
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/ch03.html#table-supported-units

Community Inter-comparrison Suite Documentation, Release 0.6.5

e <output_var> isan optional prefix to the output file argument to specify the name of the output variable
within the output file, e.g. —o my_new_var:output_filename.nc. If not provided, the default
output variable name is calculated_variable

<attributes> is an optional argument allowing users to provide additional metadata to be included in the
evaluation output variable. This should be indicated by the attributes flag (-—attributes or -a).
The attributes should then follow in comma-separated, key=value pairs, for example —-attributes
standard_name=convective_rainfall_amount, echam_version=6.1.00. Whitespace is per-
mitted in both the names and the values, but then must be enclosed in quotes: —a "operating system =
"AIX 6.1 Power6". Colons or equals signs may not be used in attribute names or values.

10.1 Evaluation Examples

10.1.1 Comparison of annual Aerosol Optical Thickness from models

In this example we compare annual Aerosol Optical Thickness from ECHAM and HadGEM model data. The data
used in this example can be found at /group_workspaces/jasmin/cis/data.

First we produce annual averages of our data by aggregating:

$ cis aggregate od550aer:ECHAM_fixed/2007_2D_3hr/od550aer.nc t —-o echam-od550aer
$ cis aggregate od550aer:HadGEM_fixed/test_fix/od550aer.nc t -o hadgem-od550aer

$ cis plot od550aer:echam-od550aer.nc —--xmin -180 --xmax 180 —--cbarorient=horizontal —--title="ECHAM]
$ cis plot od550aer:hadgem-od550aer.nc —-xmin -180 --xmax 180 --cbarorient=horizontal -ttitle="HadGEl

10.1. Evaluation Examples 85

Community Inter-comparrison Suite Documentation, Release 0.6.5

ECHAM AOT550

Latitude

—-180 -120 —60 0 60 120 180
Longitude

| |
0.25 0.30

0.00 005 010 015 0.20
(1)

86 Chapter 10. Evaluation

Community Inter-comparrison Suite Documentation, Release 0.6.5

HadGEM AOT550

Latitude

—60 0 60 120 180

1 | | 1
015 020 025 030 035 040 045 0.50

0.00 0.05 0.10
(1)

We then linearly interpolate the HadGEM data onto the ECHAM grid:

r—-colocated

$ cis col od550aer:hadgem-od550aer.nc echam-od550aer.nc:colocator=1in -o hadgem-od550aet

$ cis plot od550aer:hadgem-od550aer-colocated.nc —-xmin -180 —--xmax 180 —--cbarorient=hot

izontal —-tif

10.1. Evaluation Examples

87

Community Inter-comparrison Suite Documentation, Release 0.6.5

Latitude

e

-

—60 0 60 120 180
Longitude

| | 1
025 030 035 040 045 050

0.00 005 010 015 0.20
(1)

—180 -120

Next we subtract the two fields using:
’$ cis eval od550aer=a:echam-od550aer.nc od550=b:hadgem-od550aer-collocated.nc "a-b" 1 —# modeldiffer

Finally we plot the evaluated output:
’$ cis plot od550aer:modeldifference.nc —--xmin -180 —--xmax 180 --cbarorient=horizontal —+title:"ECHAM-

88 Chapter 10. Evaluation

Community Inter-comparrison Suite Documentation, Release 0.6.5

ECHAM-HadGEM difference AOT550

60
307
W
=
Z 0
e
3
-30
—60
—-180 -120 —60 0 60 120 180
Longitude

1 1 1 1
-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25
(unknown)

10.1.2 Calculation of Angstrom exponent for AERONET data

AERONET data allows us to calculate Angstrom Exponent (AE) and then compare it against the AE already in the file.
They should strongly correlate although it is not expected they will be identical due to averaging etc during production

of AERONET datafiles.
The file agoufou.lev20 refers to /group_workspaces/jasmin/cis/data/aeronet/AO0T/LEV20/ALL_POINTS/920801.

The AE is calculated using an eval statement:

’$ cis eval AOT_440,A0T_870:agoufou.lev20 " (-1)« (numpy.log(AOT_870/AOT_440)/numpy.log(S?O./440.))" 1

Plotting it shows the expected correlation:

’$ cis plot 440-870Angstrom:agoufou.lev20 calculated_variable:cis-alfa.nc --type compara#ivescatter =

10.1. Evaluation Examples 89

Community Inter-comparrison Suite Documentation, Release 0.6.5

0.0 0.4 0.8 1.2 1.6
AERONET 440-870Angstrom

AERONET (-1)*(numpy.log(AOT 870/AOT 440)/numpy.log(870./440.))
(o]
(s8]

This correlation can be confirmed by using the CIS szats command:

$ cis stats 440-870Angstrom:agoufou.lev20 calculated_variable:cis-alfa.nc

RESULTS OF STATISTICAL COMPARISON:

Number of points: 63126

Mean value of dataset 1: 0.290989032142

Mean value of dataset 2: 0.295878214327

Standard deviation for dataset 1: 0.233995525021
Standard deviation for dataset 2: 0.235381075635

Mean of absolute difference: 0.00488918218519

Standard deviation of absolute difference: 0.00546343157047
Mean of relative difference: 0.0284040419499

Standard deviation of relative difference: 3.95137224542
Spearman's rank coefficient: 0.999750939223

Linear regression gradient: 1.00566622549

Linear regression intercept: 0.003240372714

Linear regression r-value: 0.999746457079

Linear regression standard error: 0.00530006646489

90 Chapter 10. Evaluation

Community Inter-comparrison Suite Documentation, Release 0.6.5

10.1.3 Using Evaluation for Conditional Aggregation

The eval command can be combined with other CIS commands to allow you to perform more complex tasks than
would otherwise be possible.

For example, you might want to aggregate a satellite measurement of one variable only when the corresponding cloud
cover fraction (stored in separate variable) is less than a certain value. The aggregate command doesn’t allow this kind
of conditional aggregation on its own, but you can use an evaluation to achieve this in two stages.

In this example we use the MODIS file MOD04_L2.A2010001.2255.005.2010005215814 . hdf in directory
/group_workspaces/Jjasmin/cis/data/MODIS/MOD04_L2/. The optical depth and cloud cover vari-
ables can be seen in the following two plots:

$ cis plot Optical_Depth_Land_And_Ocean:MOD04_12.A2010001.2255.005.2010005215814.hdf —--xmin 132 --xm:
$ cis plot Cloud_Fraction_Ocean:MOD04_L2.A2010001.2255.005.2010005215814.hdf —-xmin 132 |--xmax 162 -

1.4
1.2
1.0
0.8
0.6 <
0.4

0.2

one)

(

Latitude

132 135 138 141 144 147 150 153 156 159 162 0.0
Longitude

1.0
0.9
0.8
0.7
M
-~ O
04Z
0.3
0.2
L Ty 0.1
132 135 138 141 144 147 150 153 156 159 162 0.0
Longitude

Latitude

10.1. Evaluation Examples 91

Community Inter-comparrison Suite Documentation, Release 0.6.5

First we perform an evaluation using the numpy.masked_where method to produce an optical depth variable that is
masked at all points where the cloud cover is more than 20%:

$ cis eval Cloud_Fraction_Ocean=cloud,Optical_Depth_Land_And_Ocean=0d:MOD04_12.A20100012255.005.201
$ cis plot od:cis-masked_optical_depth.nc —-xmin 132 —--xmax 162 —--ymin -70 —--title Aerosgol optical ds

Aerosol optical depth

0.32
0.28
0.24
0.20
0.16 =
7 0.12 =2
0.08

0.04

132 135 138 141 144 147 150 153 156 159 162 0.00
Longitude

nknown)

Latitude

Then we perform an aggregation on this masked output file to give the end result - aerosol optical depth aggregated
only using points where the cloud cover is less than 20%:

$ cis aggregate od:cis-masked_optical_depth.nc x=[132,162,0.5],y=[-70,-57,0.5] -o aggregated_masked_
$ cis plot od:aggregated_masked_optical_depth.nc —--xmin 132 --xmax 162 —--ymin -70 —--title "Aerosol o}

— 0.32
0.28
0.24
0.20
0.16 S
[
1 012 3
0.08
0.04

132 135 138 141 144 147 150 153 156 159 162 0.00
Longitude

Aerosol optical depth (cloud fraction > 0.2)

own)

Latitude

92 Chapter 10. Evaluation

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.masked_where.html#numpy.ma.masked_where

CHAPTER 11

Statistics

The Community Intercomparison Suite allows you to perform statistical analysis on two variables using the ‘stats’
command. For example, you might wish to examine the correlation between a model data variable and actual mea-
surements. The ‘stats’ command will calculate:

1. Number of data points used in the analysis.

The mean and standard deviation of each dataset (separately).

The mean and standard deviation of the absolute difference (var2 - varl).

The mean and standard deviation of the relative difference ((var2 - varl) / varl).

The Linear Pearson correlation coefficient.

A

The Spearman Rank correlation coefficient.
7. The coefficients of linear regression (i.e. var2 = a varl + b), r-value, and standard error of the estimate.

These values will be displayed on screen and can optionally be save as NetCDF output.

Note: Both variables used in a statistical analysis must be of the same shape in order to be compatible, i.e. the
same number of points in each dimension, and of the same type (ungridded or gridded). This means that, for example,

operations between different data products are unlikely to work correctly - performing a colocation or aggregation
onto a common grid would be a good pre-processing step.

Note: Only points which have non-missing values for both variables will be included in the analysis. The number of
points this includes is part of the output of the stats command.

Warning: Unlike aggregation, stats does not currently use latitude weighting to account for the relative areas
of different grid cells.

The statistics syntax looks like this:

$ cis stats <datagroup>... [-o <outputfile>]

where:

<datagroup> is a CIS datagroup specifying the variables and files to read and is of the format
<variable>...:<filename>[:product=<productname>] where:

e <variable> is a mandatory variable or list of variables to use.
e <filenames> is a mandatory file or list of files to read from.

* <productname> is an optional CIS data product to use (see Data Products):

93

Community Inter-comparrison Suite Documentation, Release 0.6.5

One or more datagroups should be given, but the total number of variables declared in all datagroups must be
exactly two. See Daragroups for a more detailed explanation of datagroups.

<outputfile> is an optional argument specifying a file to output to. This will be automatically given a .nc
extension if not present. This must not be the same file path as any of the input files. If not provided, then the
output will not be saved to a file and will only be displayed on screen.

11.1 Statistics Example

In this example, we perform a statistical comparison of Aeronet aerosol optical thickness at two wave-
lengths. The data we are using is shown in the following CIS plot commands and can be found at
/group_workspaces/jasmin/cis/data:

$ cis plot
$ cis plot

AQOT_500:aeronet/AOT/LEV20/ALL_POINTS/920801_121229_Yonsei_University.lev20 -+
AQT_440:aeronet/AOT/LEV20/ALL_POINTS/920801_121229_Yonsei_University.lev20 -+

Aerosol optical thickness 500nm

2.4

N
o

=
o)}

AOT 500

=
(S}

o
o

0.4, "l

R N
) : d i || ip

| :in’ﬁ,F uﬂf'qi’n’r 1

DateTime

94 Chapter 11. Statistics

title "Aeros«

title "Aeros«

Community Inter-comparrison Suite Documentation, Release 0.6.5

Aerosol optical thickness 440nm

2.0f Y .]

16r : ? Do | o : ji E

AOT 440

1.2

DateTime

We then perform a statistical comparison of these variables using:

$ cis stats AOT_SOO,AOT_440:aeronet/AOT/LEVZO/ALL_POINTS/920801_121229_Yonsei_Universit*.lev20

Which gives the following output:

RESULTS OF STATISTICAL COMPARISON:

Compared all points which have non-missing values in both variables

Number of points: 10727

Mean value of dataset 1: 0.427751965508

Mean value of dataset 2: 0.501316673814

Standard deviation for dataset 1: 0.307680514916

Standard deviation for dataset 2: 0.346274598431

Mean of absolute difference: 0.0735647083061

Standard deviation of absolute difference: 0.0455684788406
Mean of relative difference: 0.188097066086

Standard deviation of relative difference: 0.0528621773819
Spearman's rank coefficient: 0.998289763952

Linear regression gradient: 1.12233533743

Linear regression intercept: 0.0212355272705

Linear regression r-value: 0.997245296339

Linear regression standard error: 0.0256834603945

11.1. Statistics Example 95

Community Inter-comparrison Suite Documentation, Release 0.6.5

96 Chapter 11. Statistics

CHAPTER 12

Overlay Plot Examples

First subset some gridded data that will be used for the examples:

cis subset od550aer:aerocom.HadGEM3-A-GLOMAP.A2.CTRL.monthly.od550aer.2006.nc t=[2006-10-13] -o HadGl

cis subset rsutcs:aerocom.HadGEM3-A-GLOMAP.A2.CTRL.monthly.rsutcs.2006.nc t=[2006-10-13] -o HadGEM_r:

12.1 Contour over heatmap

‘cis plot od550aer:HadGEM_od550aer—-subset.nc:type=heatmap rsutcs:HadGEM_rsutcs-subset.ncitype=contour,

AOD@550nm

90

0.64

0.56

0.48

0.40

Latitude
(8]

0.32

0.24

0.16

0.08

60 120 180 240 300 360
Longitude

97

Community Inter-comparrison Suite Documentation, Release 0.6.5

‘cis plot od550aer:HadGEM_od550aer-subset.nc:type=heatmap, cmap=binary rsutcs:HadGEM_rsut#s—subset.nc:1

AOD@550nm

90

0.64

0.56

0.48

0.40

)

Latitude

0.32

+0.08

Longitude

12.2 Filled contour with transparency on NASA Blue Marble

cis plot od550aer:HadGEM_od55anr—subset.nc:cmaszeds,typezcontourf,transparencyzo.5,cmjLn:O.l5 ——typ

" AOD@550nm
. o 06923

[40.5838

[H0.4754

[68]

Latitude

40.3669

40.2585

—lo.1500

—-180 -120 -60 o 60 120
Longitude

98 Chapter 12. Overlay Plot Examples

Community Inter-comparrison Suite Documentation, Release 0.6.5

12.3 Scatter plus Filled Contour

cis subset rsutcs:HadGEM_rsutcs-subset.nc x=[-180,-90],y=[0,90] -o HadGEM_rsutcs-subset]

cis plot GGALT:RF04.20090114.192600_035100.PNI.nc:type=scatter rsutcs:HadGEM_rsutcs-subset2.nc:type=¢

90 Reference GPS Altitude (MSL) led

135

1.20

41.05

Latitude
(m)

10.60

10.45

0.30

0.15

0.00

0
-180 -170 -160 -150 -140 -130 -120 -110 -100 =90
Longitude

cis plot GGALT:RF04.20090114.192600_035100.PNI.nc:type=scatter rsutcs:HadGEM_rsutcsfsub#etZ.nc:type=<

12.3. Scatter plus Filled Contour 99

Community Inter-comparrison Suite Documentation, Release 0.6.5

Reference GPS Altitude (MSL)

Latitude

0.00

-110 -100 -90

-140 -130 -120

-180 =170 -160 -150
Longitude

12.4 File Locations

The gridded data files can be found at:
‘/group_workspaces/jasmin/cis/AeroCom/A2/HadGEM37A7GLOMAP.A2.CTRL/renamed ‘

and the ungridded:

‘/group_workspaces/jasmin/cis/jasmin_cis_repo_test_files

100 Chapter 12. Overlay Plot Examples

CHAPTER 13

Maintenance and Developer Guide

13.1 Experimental Branches

To checkout a particular branch, simply type git checkout branchname
* ‘slice’: this branch has a slicing functionality that can be used via the command line argument —slice

¢ ‘griddedgriddedcolocation’: includes functionality for CF-compliant gridded-gridded colocation using the Iris
library.

Note that these branches are deemed experimental and therefore not stable (that’s why they are in branch and not the
in main trunk!), so it comes with no warranty.

13.2 Unit test suite

The unit tests suite can be ran using Nose readily. Just go the root of the repository (i.e. cis) and type nose and this will
run the full suite of tests. A comprehensive set of test data sets can be found under the test /test_f1iles directory.
A harness directory is provided and contains a couple of test harness for those data files. Finally, integration system-
level tests are provided under the test /plot_tests directory and be ran using the run_all. sh script.

13.3 Dependencies

A graph representing the dependency tree can be found at doc/cis_dependency.dot (use
[http://code.google.com/p/jrfonseca/wiki/XDot XDot] to read it)

matplotlib

101

http://code.google.com/p/jrfonseca/wiki/XDot

Community Inter-comparrison Suite Documentation, Release 0.6.5

13.4 APl Documentation

The API reference can be generated using the following command
*“ python setup.py gendoc**

This will automatically generates the documentation using [http://epydoc.sourceforge.net/ Epydoc] in html under the
directory “’doc/api” from the [http://epydoc.sourceforge.net/docstrings.html docstrings] in the code.

13.5 Plugin development

Users can write their own “plugins” for providing extra functionality for reading and colocation. The main program
will look at the environment variable CIS_PLUGIN_HOME for any classes that subclass the relevant top level class -
as described for data products and colocation below.

The simplest way to set this environment variable is to add this to your .bashrc file:

]$ export CIS_PLUGIN_HOME=/path/to/dir

13.5.1 Data Products

Users can write their own plugins for reading in different types of data. CIS uses the notion of a ‘data product’ to
encapsulate the information about different types of data. They are concerned with ‘understanding’ the data and it’s
coordinates and producing a single self describing data object.

A data product is a subclass of AProduct and as such must implement the abstract methods:

get_file signature(self) Returns a list of regex’s to match the product’s file naming convention. CIS will
use this to decide which data product to use for a given file. The first product with a signature that matches
the filename will be used. The order in which the products are searched is determined by the priority property,
highest value first; internal products generally have a priority of 10. The product can open the file to determine
whether it can read it see get_file_type_error.

create_coords (self, filenames) Create a Coordinate object from the data files in the filenames pa-
rameter.

create_data_object (self, filenames, variable) Create and returns an ungridded data object for a
given variable from many files. The filenames parameters is a list of filenames for the data. The parameter
variable is the name of the variable to read from the dataset.

and may choose to implement:

get_variable_names (self, filenames, data_type=None) This return a list of valid variables
names from the filenames list passed in. If not implemented the base function will be used. The
data_type parameter can be used to specify extra information.

get_file type_error(self, filenames) Check the filename to see if it is of the correct type and if
not return a list of errors. If the return is None then there are no error and this is the correct data product to
use for this file. This gives a mechanism for a data product to identify itself as the correct product to use even
if a specific file signature can not be specified. For example GASSP is a type of NetCDF file and so filenames
end with .nc but so do other NetCDF files, so the data product opens the file and looks for the GASSP version
attribute, and if it doesn’t find it returns a error.

get_file format (self, filenames) Returns a file format hierarchy separated by slashes, of the
form TopLevelFormat/SubFormat/SubFormat/Version, e.g. NetCDF/GASSP/1.0, ASCII/ASCIIHyperpoint,
HDF4/CloudSat This is used within the ceda di indexing tool. If not set it will default to the products name.

102 Chapter 13. Maintenance and Developer Guide

http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/docstrings.html

Community Inter-comparrison Suite Documentation, Release 0.6.5

Here is a sketch of a data product implementation:

class MyProd (AProduct) :

#set the priority to be higher than the other netcdf file types

priority = 20

def get_file_signature(self):
return [r'.xsomething*', r'.xsomethingelsex']

def create_coords(self,

filenames) :

logging.info ("gathering coordinates")
for filename in filenames:

datal
data2 = []
data3 = []

logging.info ("gathering coordinates metadata")
metadatal = Metadata()
metadata?2 = Metadata/()
metadata3 = Metadata ()

coordl = Coord(datal,metadatal, 'X') # this coordinate will be used as the 'X' ajf
coord2 = Coord(data2,metadata2,'Y') # this coordinate will be used as the 'Y' af
coord3 = Coord(data3,metadata3l)

return CoordList ([coordl, coord2, coord3])

def create_data_object(self, filenames, variable):

logging.info ("gathering data for variable " + str(variable))
for filename in filenames:
data = []
logging.info ("gatherings metadata for variable " + str(variable))

metadata = Metadata()

coords = self.create_coords (filenames)
return UngriddedData (data,metadata, coords)

def get_file_type_error(self, filename):

if not os.path.isfile(filename) :
return ["File does not exist"]

if not file_has_attribute("file type", filename):
return ["File has wrong file type"]

return None

def get_variable_names(self, filenames, data_type=None):
vars = variable_names_from_file
del vars['Not useful']

return vars

¥xis when plot
xis when plot:

13.5. Plugin development

103

Community Inter-comparrison Suite Documentation, Release 0.6.5

13.5.2 Colocation

Users can write their own plugins for performing the colocation of two data sets. There are three different types of
plugin available for colocation and each will be described briefly below.

Kernel

A kernel is used to convert the constrained points into values in the output. There are two sorts of kernel one which
act on the final point location and a set of data points (these derive from Kernel) and the more specific kernels which
act upon just an array of data (these derive from AbstractDataOnlyKernel, which in turn derives from Kernel). The
data only kernels are less flexible but should execute faster. To create a new kernel inherit from Kernel and im-
plement the abstract method get_value (self, point, data). To make a data only kernel inherit from Ab-
stractDataOnlyKernel and implement get_value_for_data_only (self, values) and optionally overload
get_value(self, point, data).

get_value(self, point, data)

This method should return a single value (if Kernel.return_size is 1) or a list of n values (if
Kernel.return_size is n) based on some calculation on the data given a single point. The data is
deliberately left unspecified in the interface as it may be any type of data, however it is expected that each
implementation will only work with a specific type of data (gridded, ungridded etc.) Note that this method
will be called for every sample point and so could become a bottleneck for calculations, it is advisable to
make it as quick as is practical. If this method is unable to provide a value (for example if no data points
were given) a ValueError should be thrown.

get_value_for_data_only(self, values)

This method should return a single value (if Kernel.return_size is 1) or a list of n values (if
Kernel.return_size is n) based on some calculation on the values (a numpy array). Note that
this method will be called for every sample point in which data can be placed and so could become a
bottleneck for calculations, it is advisable to make it as quick as is practical. If this method is unable to
provide a value (for example if no data points were given) a ValueError should be thrown. This method
will not be called if there is no values to be used for calculations.

Constraint

The constraint limits the data points for a given sample point. The user can also add a new constraint method by
subclassing Constraint and providing an implementation for constrain_points. If more control is needed over
the iteration sequence then the method get_iterator can be overloaded in additional to constrain_points, this may
not be respected by all colocators who may still iterate over all sample data points. To enable a constraint to use a
AbstractDataOnlyKernel the method get_iterator_for_data_only should be implemented (again this may
be ignored by a colocator).

constrain_points(self, ref_point, data)

This method should return a subset of the data given a single reference point. It is expected that the data
returned should be of the same type as that given - but this isn’t mandatory. It is possible that this function
will return zero points, or no data. The colocation class is responsible for providing a fill_value.

get_iterator(self, missing_data_for_missing_sample, coord_map, coords,
data_points, shape, points, output_data)

The method should return an iterator over the output indices, hyper point for the output and data points
for that output hyper point. This may not be called by all colocators who may choose to iterate over all
sample points instead. The arguments are: * missing_data_for_missing_sample if True the
iterator should not iterate over any points in the sample points which are missing. * coord_map is a

104 Chapter 13. Maintenance and Developer Guide

Community Inter-comparrison Suite Documentation, Release 0.6.5

list of tuples of indexes of sample points coords, data coords and output coords * coords are the coords
that the data should be mapped on * data_points are the non-masked data points * shape is the final
shape of the data * points is the original sample points object * output_data is the output data

get_iterator_for_data_only(self, missing_data_for missing_sample, coord_map,
coords, data_points, shape, points, values)

The method should return an iterator over the output indices and a numpy array of the data values. This
may not be called by all colocators who may choose to iterate over all sample points instead. The param-
eters are the same as get_iterator.

Co-locator

Another plugin which is available is the colocation method itself. A new one can be created by subclassing Colocator
and providing an implementation for colocate (self, points, data, constraint, kernel). This
method takes a number of points and applies the given constraint and kernel methods on the data for each of those
points. It is responsible for returning the new data object to be written to the output file. As such, the user could
create a colocation routine capable of handling multiple return values from the kernel, and hence creating multiple
data objects, by creating a new colocation method.

Plugins

For all of these plugins any new variables, such as limits, constraint values or averaging parameters, are automat-
ically set as attributes in the relevant object. For example, if the user wanted to write a new constraint method
(AreaConstraint, say) which needed a variable called area, this can be accessed with self.area within
the constraint object. This will be set to whatever the user specifies at the command line for that variable, e.g.:

‘$./cis.py col my_sample_file rain:"model_data_?.nc"::AreaConstraint,area=6000,fill_valﬁez0.0:nn_gri(

Example implementations of new colocation plugins are demonstrated below for each of the plugin types:

class MyColocator (Colocator) :

def colocate(self, points, data, constraint, kernel):

values = []

for point in points:
con_points = constraint.constrain_points (point, data)
try:

values.append (kernel.get_value (point, con_points))
except ValueError:
values.append(constraint.fill_value)
new_data = LazyData(values, data.metadata)
new_data.missing_value = constraint.fill_value
return new_data

class MyConstraint (Constraint) :

def constrain_points(self, ref_point, data):
con_points = []
for point in data:
if point.value > self.val_check:
con_points.append (point)
return con_points

13.5. Plugin development 105

Community Inter-comparrison Suite Documentation, Release 0.6.5

class MyKernel (Kernel) :

def get_value(self, point, data):

nearest_point = point.furthest_point_from()
for data_point in data:
if point.compdist (nearest_point, data_point):
nearest_point = data_point
return nearest_point.val

106

Chapter 13. Maintenance and Developer Guide

CHAPTER 14

Indices and tables

¢ genindex
* modindex

e search

107

	Installing CIS
	Checking the version
	Dependencies

	What kind of data can CIS deal with?
	Writing
	Reading
	Datagroups
	Reading NetCDF4 Hierarchical Groups
	Example plots

	Using the command line
	LSF Batch Job Submission

	Getting file information
	Subsetting
	Examples

	Aggregation
	Conditional Aggregation
	Aggregation Examples

	Co-location
	Available Colocators and Kernels
	Colocation output files
	Basic colocation design
	Writing your own plugins

	Colocation Examples
	Ungridded to Ungridded Colocation Examples
	Examples of co-location of ungridded data on to gridded
	Examples of Gridded to Gridded Colocation

	Plotting
	Plot Options
	Saving to a File
	Plot Formatting
	Setting Plot Ranges
	Overlaying Multiple Plots
	Scatter Overlay Plots
	Available Colours and Markers

	Evaluation
	Evaluation Examples

	Statistics
	Statistics Example

	Overlay Plot Examples
	Contour over heatmap
	Filled contour with transparency on NASA Blue Marble
	Scatter plus Filled Contour
	File Locations

	Maintenance and Developer Guide
	Experimental Branches
	Unit test suite
	Dependencies
	API Documentation
	Plugin development

	Indices and tables

