

 Navigation

 	
 index

 	
 next |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

Welcome to the Community Intercomparison Suite’s documentation!

Contents:

	1. Installing CIS
	1.1. Dependencies

	2. What’s new in CIS
	2.1. What’s new in CIS 1.5

	2.2. What’s new in CIS 1.4

	2.3. What’s new in CIS 1.3

	2.4. What’s new in CIS 1.2

	2.5. What’s new in CIS 1.1

	3. What kind of data can CIS deal with?
	3.1. Writing

	3.2. Reading

	3.3. Datagroups

	3.4. Reading hybrid height data with separate orography data

	3.5. Reading NetCDF4 Hierarchical Groups

	4. Using the command line
	4.1. LSF Batch Job Submission

	5. CIS as a Python library (API)
	5.1. Main API

	5.2. Analysis Methods

	6. Getting file information

	7. Subsetting
	7.1. Examples

	8. Aggregation
	8.1. Conditional Aggregation

	8.2. Aggregation Examples

	9. Collocation
	9.1. Available Collocators and Kernels

	9.2. Collocation output files

	9.3. Writing your own plugins

	10. Collocation Examples
	10.1. Ungridded to Ungridded Collocation Examples

	10.2. Examples of collocation of ungridded data on to gridded

	10.3. Examples of Gridded to Gridded Collocation

	11. Plotting
	11.1. Plot Options

	11.2. Saving to a File

	11.3. Plot Formatting

	11.4. Setting Plot Ranges

	11.5. Overlaying Multiple Plots

	11.6. Available Colours and Markers

	12. Gallery

	13. Evaluation
	13.1. Evaluation Examples

	14. Statistics
	14.1. Statistics Example

	15. Overlay Plot Examples
	15.1. Contour over heatmap

	15.2. Filled contour with transparency on NASA Blue Marble

	15.3. Scatter plus Filled Contour

	15.4. File Locations

	16. How can I read my own data?
	16.1. Introduction

	16.2. Tutorials

	16.3. Data plugin reference

	17. Analysis plugin development
	17.1. Basic collocation design

	17.2. Kernel

	17.3. Constraint

	17.4. Collocator

	17.5. Implementation

	18. Maintenance and Developer Guide
	18.1. Source files

	18.2. Test suites

	18.3. Dependencies

	18.4. Creating a Release

	18.5. Documentation

	18.6. Continuous Integration Server

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

1. Installing CIS

A pre-packaged version of CIS is available for installation using conda for 64-bit Linux, Mac OSX and Windows.

Once conda is installed, you can easily install CIS with the following command:

$ conda install -c conda-forge cis

If you don’t already have conda, you must first download and install it. Anaconda is a free conda package that includes Python and many common scientific and data analysis libraries, and is available here [http://continuum.io/downloads]. Further documentation on using Anaconda and the features it provides can be found at http://docs.continuum.io/anaconda/index.html.

To check that CIS is installed correctly, simply type cis version to display the version number, for example:

$ cis version
Using CIS version: V1R4M0 (Stable)

In order to upgrade CIS to the latest version use:

$ conda update -c conda-forge cis

1.1. Dependencies

If you choose to install the dependencies yourself, use the following command to check the required dependencies are present:

$ python setup.py checkdep

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

2. What’s new in CIS

	2.1. What’s new in CIS 1.5
	2.1.1. CIS 1.5 features

	2.1.2. Incompatible changes

	2.1.3. Bugs fixed

	2.1.4. CIS 1.5.1 fixes

	2.1.5. CIS 1.5.2 fixes

	2.2. What’s new in CIS 1.4
	2.2.1. CIS 1.4 features

	2.2.2. Incompatible changes

	2.2.3. Bugs fixed

	2.3. What’s new in CIS 1.3
	2.3.1. CIS 1.3 features

	2.3.2. Bugs fixed

	2.3.3. CIS 1.3.1 fixes

	2.4. What’s new in CIS 1.2
	2.4.1. CIS 1.2 features

	2.4.2. Bugs fixed

	2.4.3. CIS 1.2.1 features

	2.5. What’s new in CIS 1.1
	2.5.1. CIS 1.1 features

	2.5.2. Bugs fixed

	2.5.3. What’s new in CIS 1.1.1

	2.5.4. Bugs fixed

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

 	2. What’s new in CIS

2.1. What’s new in CIS 1.5

This page documents the new features added, and bugs fixed in CIS since version 1.4.0. See all changes here: https://github.com/cedadev/cis/compare/1.4.0...1.5.0

2.1.1. CIS 1.5 features

	The biggest change is that CIS can now be used as a Python library, all of the command line tools are now easily
available through Python. This allows commands to be run sequentially in memory, slicing of gridded or ungridded
datasets and easy integration with other Python packages such as Iris and Pandas.

	Taylor diagrams - CIS is now able to plot Taylor diagrams which are an excellent way of quantitatively comparing two
or more (collocated) datasets

	All map plots are now able to be plotted in any of the available Cartopy projections, see
http://scitools.org.uk/cartopy/docs/latest/crs/projections.html for a full list.

2.1.2. Incompatible changes

	Since aggregation of gridded datasets has quite a different set of options as compared to the aggregation of
ungridded datasets, the aggregate command has been deprecated for gridded datasets. It is still supported through
command line for the time being, but will be removed in future releases. Please use the collapse command instead.

2.1.3. Bugs fixed

	[JASCIS-268] The plotting routines have been re-architected to allow easier testing and extension.

	[JASCIS-357] Added deprecation for the aggregation of gridded datasets

	[JASCIS-329] Metadata objects now attempt to use cf_units for all units, but will fall back to strings if needed. In
future releases we may insist on plugins providing standard units.

2.1.4. CIS 1.5.1 fixes

	Minor fix in interpreting units when reading some NetCDF data in Python 2

	Fixed an issue where line and scatter plots weren’t respecting the yaxis keyword

2.1.5. CIS 1.5.2 fixes

	Gridded and ungridded datasets can now be subset to an arbitrary lat/lon (shapely) shape.

	Slicing and copying Coords now preserves the axis

	Fixed an issue where subsetting gridded data over multiple coordinates sometimes resulted in an error

	CIS will now catch errors when writing out metadata values which might have special types and can’t be safely
cast (e.g. VALID_RANGE).

	Minor fix for log scale color bars

	Minor fix for parsing the command aliases

	Minor fix for creating data lists from iterators

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

 	2. What’s new in CIS

2.2. What’s new in CIS 1.4

This page documents the new features added, and bugs fixed in CIS since version 1.3.1. See all changes here: https://github.com/cedadev/cis/compare/1.3.1...1.4.0

2.2.1. CIS 1.4 features

	An all new Python interface for subsetting any data read by CIS. Just call the subset() method on any CIS GriddedData
or UngriddedData object to access the same functionality as through the command line - without reading or writing to
disk. See CIS API for more details.

	CIS now includes full support for Python => 3.4, as well as Python 2.7

	New verbose and quiet flags allow for control over how much CIS commands output to the screen. The default verbosity
has also changed so that by default only warnings and errors will be output to the screen. The full debug output
remains for the cis.log file.

	Significant optimizations have been made in gridded -> ungridded collocation which should now be considerably faster.
Also, when collocating multiple gridded source datasets the interpolation indices are now cached internally leading
to further time savings.

	Any valid_range attributes in supported NetCDF or HDF files (including MODIS, CALIOP and CloudSat) files are now
automatically respected by CIS. All data values outside of the valid range are masked. Data from NetCDF files with
valid_min or valid_max attributes is also masked appropriately.

	CloudSat missing and missop attributes are now read and combined to mask out values which don’t conform to the
inequality defined.

	[JASCIS-342] The extrapolation modes are now consistent across both gridded->gridded and gridded->ungridded collocation
modes. The default is no extrapolation (gridded->gridded would previously extrapolate). This can still be overridden
by the user.

	[JASCIS-128] If the output file already exists the user is now prompted to overwrite it. This prompt can be disabled
by using the –force-overwrite argument, or setting the CIS_FORCE_OVERWRITE environment variable to ‘TRUE’.

2.2.2. Incompatible changes

	To accommodate the new verbose flags (-v) the info command now takes a single datagroup argument, and optional
variable names, as reflected in the updated documentation.

	CIS no longer prepends ungridded output files with ‘cis-‘. Instead CIS creates a global attribute in the output file
called source which contains ‘CIS<version>’. This is checked in the updated CIS plugin when reading any NetCDF file.

Note

While this is much neater going forward and will hopefully save a lot of head scratching it will mean CIS is unable
to read old files produced by CIS automatically. All commands can be forced to use the CIS product by including the
product=cis keyword argument. Alternatively you can update the data file manually using the following command:
ncatted -O -a source,global,a,c,"CIS" in.nc

2.2.3. Bugs fixed

	[JASCIS-34] MODIS L3 data is now correctly treated as gridded data.

	[JASCIS-345] Product regular expression matching now matches the whole string rather than just the start.

	[JASCIS-360] Collocation now correctly applies the ‘missing_data_for_missing_sample’ logic for all collocations.

	[JASCIS-361] Fixed the CloudSat scale and offset transformation so that they are now applied correctly.

	[JASCIS-281] Fixed a caching error when aggregating multiple ungridded datasets which could lead to incorrect values

	CIS no longer crashes when the CIS_PLUGIN_HOME path cannot be found

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

 	2. What’s new in CIS

2.3. What’s new in CIS 1.3

This page documents the new features added, and bugs fixed in CIS since version 1.2. See all changes here: https://github.com/cedadev/cis/compare/1.2.1...1.3.0

2.3.1. CIS 1.3 features

	Some significant optimisations have been made in reading Caliop, CCI and Aeronet datasets, there have also been speed
improvements for ungridded data subsetting

	New Pandas interface allows the easy creation of DataFrames through the ‘as_data_frame’ method on Gridded or Ungridded
data. Pandas is an extensive python library providing many powerful data analysis algorithms and routines.

	Compatibility updates for newer versions of Numpy and SciPy. The minimum require version of SciPy is now 0.16.0

	Swapped out Basemap plotting routines for Cartopy. This removed a dependancy (as Cartopy was already required by
Iris), and has given us more flexibility for plotting different projections in the future

	Plots now automatically try to use the most appropriate resolution background images for plots over coastlines NASA
blue marble images.

	‘scatter_overlay’ plots have been completely removed (they have been deprecated for the last two versions), the same
functionality can be achieved through the more generic ‘overlay’ plots.

	Update to the UngriddedData.coord() and .coords() API to match the changes in IRIS >=1.8. This allows users to also
search for coordinates by supplying a Coord instance to compare against. Currently this only compares
standard names, but this may be extended in the future.

2.3.2. Bugs fixed

	JASCIS-279 - This release removes the basemap dependency and means we can use a much newer version of GEOS which
doesn’t clash with the SciTools version

	JASCIS-267 - Fixed ASCII file reading to be compatible with Numpy 1.9

	JASCIS-259 - Fixed Stats unit tests to reflect updates in SciPy (>0.15.0) linear regression routines for masked arrays

	JASCIS-211 - Subsetting now accepts variable names (rather than axes shorthands) more consistently, the docs have
been updated to make the dangers of relying on axes shorthands clear and an error is now thrown if a specific subset
coordinate is not found.

	JASCIS-275 - The ungridded subsetting is now done array-wise rather than element wise giving large performance
improvements

2.3.3. CIS 1.3.1 fixes

	JASCIS-231 & JASCIS-209 - CIS now better determines the yaxis when the user specifies the xaxis as ‘time’ so that overlaying multiple time series is easy

	JASCIS-283 - An issue with setting xmin or xmax using datetimes

	A minor fix to the AerosolCCI product

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

 	2. What’s new in CIS

2.4. What’s new in CIS 1.2

This page documents the new features added, and bugs fixed in CIS since version 1.1. See all changes here: https://github.com/cedadev/cis/compare/1.1.0...1.2.0

2.4.1. CIS 1.2 features

	All new cis info command provides much more detailed information about ungridded data variables and enables multiple variables to be output at a time.

	Updated a number of routines to take advantage of Iris 1.8 features. In particular gridded-gridded collocation using the nearest neighbour kernel should be significantly faster. Iris 1.8 is now the minimum version required for CIS.

	Gridded-ungridded collocation now supports collocation from cubes with hybrid height or hybrid pressure coordinates for both nearest neighbour and linear interpolation kernels.

	Built-in support for reading multiple HadGEM .pp files directly.

	All new API and plugin development documentation, including a number of tutorials

2.4.2. Bugs fixed

	JASCIS-253 - Any ungridded points which contain a NaN in any of its coordinate values will now be ignored by CIS

	JASCIS-250 - Multiple HadGEM files can now be read correctly through the new data plugins.

	JASCIS-197 - Gridded-gridded collocation now respects scalar coordinates

	JASCIS-199 - Aggregation now correctly uses the bounds supplied by the user, even when collapsing to length one coordinates.

	Speed improvement to the ungridded-gridded collocation using linear interpolation

	Several bug fixes for reading multiple GASSP ship files

	Renamed and restructured the collocation modules for consistency

	Many documentation spelling and formatting updates

	Many code formatting updates for PEP8 compliance

2.4.3. CIS 1.2.1 features

	Updated CCI plugin to support Aerosol CCI v3 files.

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

 	2. What’s new in CIS

2.5. What’s new in CIS 1.1

This page documents the new features added, and bugs fixed in CIS since version 1.0. For more detail see all changes here: https://github.com/cedadev/cis/compare/1.0.0...1.1.0

2.5.1. CIS 1.1 features

	JASMIN-CIS is now called CIS, and the packages, modules and documentation have been renamed accordingly.

	Conda packages are now available to allow much easier installation of CIS, and across more platforms: Linux, OSX and Windows.

	PyHDF is now an optional dependency. This makes the installation of CIS on e.g. Windows much easier when HDF reading is not required.

2.5.2. Bugs fixed

	JASCIS-243 - Error when reading multiple GASSP aircraft files

	JASCIS-139 - Updated ungridded aggregation to rename any variables which clash with coordinate variables, as this breaks during the output otherwise.

	Compatibility fixes for Numpy versions >1.8 and Python-NetCDF versions >1.1.

	Fix Caliop pressure units which were stored as hPA, but need to be hPa to conform to CF.

	The integration test data has been moved completely out of the repository - making the download quicker and less bloated. It’s location can be specified by setting the CIS_DATA_HOME environment variable.

	A test runner has been created to allow easy running of the unit and integration test.

2.5.3. What’s new in CIS 1.1.1

This section documents changes in CIS since version 1.1, these were primarily bug fixes and documentation updates. See all changes here: https://github.com/cedadev/cis/compare/1.1.0...1.1.1

2.5.4. Bugs fixed

	JASCIS-181 - Updated eval documentation

	JASCIS-239 - Documented the requirement of PyHamCrest for running tests

	JASCIS-249 - CIS will now accept variables and filenames (such as Windows paths) which include a colon as long as they are escaped with a backslash. E.g. cis plot my_var:C\:\my_file.nc.

	Occasionally HDF will exit when reading an invalid HDF file without throwing any exceptions. To protect against this the HDF reader will now insist on an .hdf extension for any files it reads.

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

3. What kind of data can CIS deal with?

3.1. Writing

When creating files from a CIS command, CIS uses the NetCDF 4 classic format. Output files are always suffixed with .nc.

3.2. Reading

CIS has built-in support for NetCDF and HDF4 file formats. That said, most data requires some sort of pre-processing
before being ready to be plotted or analysed (this could be scale factors or offsets needing to applied, or even just
knowing what the dependencies between variables are). For that reason, the way CIS deals with reading in data files
is via the concept of “data products”. Each product has its own very specific way of reading and interpreting the data
in order for it to be ready to be plotted, analysed, etc.

So far, CIS can read the following ungridded data files:

	Dataset
	Product name
	Type
	File Signature

	AERONET
	Aeronet
	Ground-stations
	*.lev20

	Aerosol CCI
	Aerosol_CCI
	Satellite
	*ESACCI*AEROSOL*

	CALIOP L1
	Caliop_L1
	Satellite
	CAL_LID_L1-ValStage1-V3*.hdf

	CALIOP L2
	Caliop_L2
	Satellite
	CAL_LID_L2_05kmAPro-Prov-V3*.hdf

	CloudSat
	CloudSat
	Satellite
	*_CS_*GRANULE*.hdf

	Flight campaigns
	NCAR_NetCDF_RAF
	Aircraft
	RF*.nc

	MODIS L2
	MODIS_L2
	Satellite
	MYD06_L2.hdf, *MOD06_L2*.hdf, *MYD04_L2*.hdf, *MOD04_L2*.hdf, *MYDATML2.*.hdf, *MODATML2*.hdf

	Cloud CCI
	Cloud_CCI
	Satellite
	*ESACCI*CLOUD*

	CSV datapoints
	ASCII_Hyperpoints
	N/A
	*.txt

	CIS ungridded
	cis
	CIS output
	*.nc containing the attribute Source = CIS(version)

	NCAR-RAF
	NCAR_NetCDF_RAF
	Aircraft
	*.nc containing the attribute Conventions with the value NCAR-RAF/nimbus

	GASSP
	NCAR_NetCDF_RAF
	Aircraft
	*.nc containing the attribute GASSP_Version

	GASSP
	NCAR_NetCDF_RAF
	Ship
	*.nc containing the attribute GASSP_Version, with no altitude

	GASSP
	NCAR_NetCDF_RAF
	Ground-station
	*.nc containing the attribute GASSP_Version, with attributes Station_Lat, Station_Lon and Station_Altitude

It can also read the following gridded data types:

	Dataset
	Product name
	Type
	File Signature

	MODIS L3 daily
	MODIS_L3
	Satellite
	MYD08_D3.hdf, *MOD08_D3*.hdf, *MOD08_E3*.hdf

	HadGEM pp data
	HadGEM_PP
	Gridded Model Data
	*.pp

	Net_CDF Gridded Data
	NetCDF_Gridded
	Gridded Model Data
	*.nc (this is the default for NetCDF Files that do not match any other signature)

The file signature is used to automatically recognise which product definition to use. Note the product can overridden
easily by being specified at the command line.

This is of course far from being an exhaustive list of what’s out there. To cope with this, a “plugin” architecture has
been designed so that the user can readily use their own data product reading routines, without even having to change
the code - see the plugin development page for more information. There are also mechanisms
to allow you to overwrite default behaviour if the built-in products listed above do not achieve the desired results.

3.3. Datagroups

Most CIS commands operate on a ‘datagroup’, which is a unit of data containing one or more similar variables and one or
more files from which those variables should be taken. A datagroup represents closely related data from a specific
instrument or model and as such is associated with only one data product.

A datagroup is specified with the syntax:

<variable>...:<filename>[:product=<productname>] where:

	<variable> is a mandatory argument specifying the variable or variable names to use. This should be the name of
the variable as described in the file, e.g. the NetCDF variable name or HDF SDS/VDATA variable name. Multiple
variables may be specified by commas, and variables may be wildcarded using any wildcards compatible with the
python module glob, so that *, ? and [] can all be used

Attention

When specifying multiple variables, it is essential that they be on the same grid (i.e. use the same coordinates).

	<filenames> is a mandatory argument used to specify the files to read the variable from. These can be specified
as a comma seperated list of the following possibilities:

1. a single filename - this should be the full path to the file

2. a single directory - all files in this directory will be read

3. a wildcarded filename - A filename with any wildcards compatible with the python module glob, so that *, ? and [] can all be used. E.g., /path/to/my/test*file_[0-9].

Attention

When multiple files are specified (whether through use of commas, pointing at a directory, or wildcarding),
then all those files must contain all of the specified variables, and the files should be ‘compatible’ - it
should be possible to aggregate them together using a shared dimension - typically time (in a NetCDF file this
is usually the unlimited dimension). So selecting multiple monthly files for a model run would be OK, but
selecting files from two different datatypes would not be OK.

	<productname> is an optional argument used to specify the type of files being read.
If omitted, the program will attempt to figure out which product to use based on the filename.
See Reading to see a list of available products and their file signatures.

For example:

illum:20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc
Cloud_Fraction_*:MOD*,MODIS_dir/:product=MODIS_L2

Some file paths or variable names might contain colons (:), these need to be escaped so that CIS can tell the difference between it and the colons used to separate Datagroup elements. Simply use a backslash () to escape these characters. For example:

"TOTAL RAINFALL RATE\: LS+CONV KG/M2/S:C\:\My files\MODIS_dir:product=MODIS_L2"

Notice that we have used outer quotes to allow for the spaces in the variable and file names, and used the backslashes to escape the colons.

3.4. Reading hybrid height data with separate orography data

CIS supports the reading of gridded data containing hybrid height and pressure fields, with an orography field supplied in a separate file.
The file containing the orography field (which should be properly referenced from a formula term in the data file) can just be appended to the list of files to be read in and CIS will attempt to create an appropriate altitude dimension.

3.5. Reading NetCDF4 Hierarchical Groups

CIS supports the reading of NetCDF4 hierarchical groups [https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/Data-Model.html].
These can be specified on the command line in the format <group>/<variable_name>,
e.g. AVHRR/Ch4CentralWavenumber. Groups can be nested to any required depth like <group1>/<group2...>/<variable_name>.

CIS currently does not support writing out of NetCDF4 groups, so any groups read in will be output ‘flat’.

3.5.1. Reading groups in user-developed product plugins

Most of the methods in the cis.data_io.netcdf module support netCDF4 groups using the
syntax described above - users should use this module when designing their own plugins to ensure support for groups.

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

4. Using the command line

Run the following command to print help and check that it runs: cis --help

The following should be displayed:

usage: cis [-h] [-v | -q] [--force-overwrite]
 {plot,info,col,aggregate,subset,eval,stats,version} ...

positional arguments:
 {plot,info,col,aggregate,subset,eval,stats,version}
 plot Create plots
 info Get information about a file
 col Perform collocation
 aggregate Perform aggregation
 subset Perform subsetting
 eval Evaluate a numeric expression
 stats Perform statistical comparison of two datasets
 version Display the CIS version number

optional arguments:
 -h, --help Show this help message and exit
 -v, --verbose Increase the level of logging information output to
 screen to include 'Info' statements
 -vv All log messages will be output to the screen including 'Debug' statements
 -q, --quiet Suppress all output to the screen, only 'Error'
 messages will be displayed (which are always fatal).
 --force-overwrite Do not prompt when an output file already exists -
 always overwrite. This can also be set by setting the
 'CIS_FORCE_OVERWRITE' environment variable to 'TRUE'

There are 8 commands the program can execute:

	plot which is used to plot the data

	info which prints information about a given input file

	col which is used to perform collocation on data

	aggregate which is used to perform aggregation along coordinates in the data

	subset which is used to perform subsetting of the data

	eval which is used to evaluate a numeric expression on data

	stats which is used to perform a statistical comparison of two datasets

	version which is used to display the version number of CIS

If an error occurs while running any of these commands, you may wish to increase the level of output using the verbose
option, or check the log file ‘cis.log’; the default location for this is the current user’s home directory.

4.1. LSF Batch Job Submission

CIS jobs may be submitted to an LSF type batch submission system (e.g. the JASMIN environment) by using the
command cis.lsf instead of cis. In this case the job will be sent to the batch system and any output will be written
to the log file.

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

5. CIS as a Python library (API)

5.1. Main API

As a command line tool, CIS has not been designed with a python API in mind. There are however some utility functions
that may provide a useful start for those who wish to use CIS as a python library. For example, the functions in the
base cis module provide a straightforward way to load your data. They can be easily import using, for example: from cis import read_data.
One of the advantages of using CIS as a Python library is that you are able to perform multiple operations in one go,
that is without writing to disk in between. In certain cases this may provide a significant speed-up.

Note

This section of the documentation expects a greater level of Python experience than the other sections. There
are many helpful Python guides and tutorials available around the web if you wish to learn more.

The read_data() function is a simple way to read a single gridded or ungridded data object (e.g. a NetCDF
variable) from one or more files. CIS will determine the best way to interpret the datafile by comparing the file
signature with the built-in data reading plugins and any user defined plugins. Specifying a particular product
allows the user to override this automatic detection.

	
cis.read_data(filenames, variable, product=None)

	Read a specific variable from a list of files
Files can be either gridded or ungridded but not a mix of both.
First tries to read data as gridded, if that fails, tries as ungridded.

	Parameters:	
	filenames (string or list) – The filenames of the files to read. This can be either a single filename as a string, a comma
separated list, or a list of string filenames. Filenames can include directories which will be expanded to
include all files in that directory, or wildcards such as * or ?.

	variable (str) – The variable to read from the files

	product (str) – The name of the data reading plugin to use to read the data (e.g. Cloud_CCI).

	Returns:	The specified data as either a GriddedData or UngriddedData object.

The read_data_list() function is very similar to read_data() except that it allows the user to specify
more than one variable name. This function returns a list of data objects, either all of which will be gridded, or all
ungridded, but not a mix. For ungridded data lists it is assumed that all objects share the same coordinates.

	
cis.read_data_list(filenames, variables, product=None, aliases=None)

	Read multiple data objects from a list of files. Files can be either gridded or ungridded but not a mix of both.

	Parameters:	
	filenames (string or list) – The filenames of the files to read. This can be either a single filename as a string, a comma
separated list, or a list of string filenames. Filenames can include directories which will be expanded to
include all files in that directory, or wildcards such as * or ?.

	variables (string or list) – One or more variables to read from the files

	product (str) – The name of the data reading plugin to use to read the data (e.g. Cloud_CCI).

	aliases (string or list) – List of aliases to put on each variable’s data object as an alternative means of identifying them.

	Returns:	A list of the data read out (either a GriddedDataList or UngriddedDataList depending on
the type of data contained in the files)

The get_variables() function returns a list of variable names from one or more specified files. This can be useful
to inspect a set of files before calling the read routines described above.

	
cis.get_variables(filenames, product=None, type=None)

	Get a list of variables names from a list of files. Files can be either gridded or ungridded but not a mix of both.

	Parameters:	
	filenames (string or list) – The filenames of the files to read. This can be either a single filename as a string, a comma
separated list, or a list of string filenames. Filenames can include directories which will be expanded to
include all files in that directory, or wildcards such as * or ?.

	product (str) – The name of the data reading plugin to use to read the data (e.g. Cloud_CCI).

	type (str) – The type of HDF data to read, i.e. ‘VD’ or ‘SD’

	Returns:	A list of the variables

5.1.1. Data Objects

Each of the above methods return either GriddedData or UngriddedData objects. These objects are the main
data handling objects used within CIS, and their main methods are discussed in the following section. These classes
share a common interface, defined by the CommonData class, which is detailed below. For technical reasons some
methods which are common to both GriddedData and UngriddedData are not defined in the
CommonData interface. The most useful of these methods are probably summary() and save_data().

These objects can also be ‘sliced’ analogously to the underlying numpy arrays, and will return a copy of the requested
data as a new CommonData object with the correct data, coordinates and metadata.

	
class cis.data_io.common_data.CommonData

	Interface of common methods implemented for gridded and ungridded data.

	
alias

	Return an alias for the variable name. This is an alternative name by which this data object may be identified
if, for example, the actual variable name is not valid for some use (such as performing a python evaluation).

	Returns:	The alias

	Return type:	str

	
as_data_frame(copy)

	Convert a CommonData object to a Pandas DataFrame.

	Parameters:	copy – Create a copy of the data for the new DataFrame? Default is True.

	Returns:	A Pandas DataFrame representing the data and coordinates. Note that this won’t include any metadata.

	
collocated_onto(sample, how='', kernel=None, missing_data_for_missing_sample=True, fill_value=None, var_name='', var_long_name='', var_units='', **kwargs)

	Collocate the CommonData object with another CommonData object using the specified collocator and kernel.

	Parameters:	
	sample (CommonData) – The sample data to collocate onto

	how (str) – Collocation method (e.g. lin, nn, bin or box)

	or cis.collocation.col_framework.Kernel kernel (str) –

	missing_data_for_missing_sample (bool) – Should missing values in sample data be ignored for collocation?

	fill_value (float) – Value to use for missing data

	var_name (str) – The output variable name

	var_long_name (str) – The output variable’s long name

	var_units (str) – The output variable’s units

	kwargs – Constraint arguments such as h_sep, a_sep, etc.

	Return CommonData:

		The collocated dataset

	
get_all_points()

	Returns a list-like object allowing access to all points as HyperPoints.
The object should allow iteration over points and access to individual points.

	Returns:	list-like object of data points

	
get_coordinates_points()

	Returns a list-like object allowing access to the coordinates of all points as HyperPoints.
The object should allow iteration over points and access to individual points.

	Returns:	list-like object of data points

	
get_non_masked_points()

	Returns a list-like object allowing access to all points as HyperPoints.
The object should allow iteration over non-masked points and access to individual points.

	Returns:	list-like object of data points

	
history

	Return the associated history of the object

	Returns:	The history

	Return type:	str

	
is_gridded()

	Returns value indicating whether the data/coordinates are gridded.

	
plot(*args, **kwargs)

	Plot the data. A matplotlib Axes is created if none is provided.

The default method for series data is ‘line’, otherwise (for e.g. a map plot) is ‘scatter2d’ for UngriddedData
and ‘heatmap’ for GriddedData.

	Parameters:	how (string) – The method to use, one of: “contour”, “contourf”, “heatmap”, “line”, “scatter”, “scatter2d”,

“comparativescatter”, “histogram”, “histogram2d” or “taylor”
:param Axes ax: A matplotlib axes on which to draw the plot
:param Coord or CommonData xaxis: The data to plot on the x axis
:param Coord or CommonData yaxis: The data to plot on the y axis
:param string or cartopy.crs.Projection projection: The projection to use for map plots (default is PlateCaree)
:param float central_longitude: The central longitude to use for PlateCaree (if no other projection specified)
:param string label: A label for the data. This is used for the title, colorbar or legend depending on plot type
:param args: Other plot-specific args
:param kwargs: Other plot-specific kwargs
:return Axes: The matplotlib Axes on which the plot was drawn

	
sampled_from(data, how='', kernel=None, missing_data_for_missing_sample=True, fill_value=None, var_name='', var_long_name='', var_units='', **kwargs)

	Collocate the CommonData object with another CommonData object using the specified collocator and kernel

	Parameters:	
	or CommonDataList data (CommonData) – The data to resample

	how (str) – Collocation method (e.g. lin, nn, bin or box)

	or cis.collocation.col_framework.Kernel kernel (str) –

	missing_data_for_missing_sample (bool) – Should missing values in sample data be ignored for collocation?

	fill_value (float) – Value to use for missing data

	var_name (str) – The output variable name

	var_long_name (str) – The output variable’s long name

	var_units (str) – The output variable’s units

	kwargs – Constraint arguments such as h_sep, a_sep, etc.

	Return CommonData:

		The collocated dataset

	
set_longitude_range(range_start)

	Rotates the longitude coordinate array and changes its values by
360 as necessary to force the values to be within a 360 range starting
at the specified value.
:param range_start: starting value of required longitude range

	
subset(**kwargs)

	Subset the CommonData object based on the specified constraints. Constraints on arbitrary coordinates are
specified using keyword arguments. Each constraint must have two entries (a maximum and a minimum) although
one of these can be None. Datetime objects can be used to specify upper and lower datetime limits, or a
single PartialDateTime object can be used to specify a datetime range.

The keyword keys are used to find the relevant coordinate, they are looked for in order of name, standard_name,
axis and var_name.

	For example:

	
	data.subset(time=[datetime.datetime(1984, 8, 28), datetime.datetime(1984, 8, 29)],

	altitude=[45.0, 75.0])

Will subset the data from the start of the 28th of August 1984, to the end of the 29th, and between altitudes of
45 and 75 (in whatever units ares used for that Coordinate).

	And:

	data.subset(time=[PartialDateTime(1984, 9)])

Will subset the data to all of September 1984.

	Parameters:	kwargs – The constraint arguments

	Return CommonData:

		The subset of the data

	
var_name

	Return the variable name associated with this data object

	Returns:	The variable name

5.1.2. Pandas

All CommonData objects can be converted to Pandas [http://pandas.pydata.org] DataFrames using the
as_data_frame() methods. This provides an easy interface to the powerful statistical tools available in Pandas.

5.2. Analysis Methods

5.2.1. Collocation

Each data object provides both collocated_onto() and sampled_from() methods, which are different ways of
calling the collocation depending on whether the object being called is the source or the sample. For example the
function performed by the command line:

$ cis col Temperature:2010.nc 2009.nc:variable=Temperature

can be performed in Python using:

temperature_2010 = cis.read_data('Temperature', '2010.nc')
temperature_2009 = cis.read_data('Temperature', '2009.nc')
temperature_2010.sampled_from(temperature_2009)

or, equivalently:

temperature_2009.collocated_onto(temperature_2010)

5.2.2. Aggregation

UngriddedData objects provide the aggregate() method to allow easy aggregation. Each dimension of the
desired grid is specified as a keyword and the start, end and step as the argument (as a tuple, list or slice).

For example:

data.aggregate(x=[-180, 180, 360], y=slice(-90, 90, 10))

or:

data.aggregate(how='mean', t=[PartialDateTime(2008,9), timedelta(days=1))

Datetime objects can be used to specify upper and lower datetime limits, or a
single PartialDateTime object can be used to specify a datetime range. The gridstep can be specified as a
DateTimeDelta object.

The keyword keys are used to find the relevant coordinate, they are looked for in order of name, standard_name,
axis and var_name.

GriddedData objects provide the collapsed() method which shadows the Iris method of the same name. Our
implementation is a slight extension of the Iris method which allows partial collapsing of multi-dimensional auxilliary
coordinates.

5.2.3. Subsetting

All objects have a subset() method for easily subsetting data across arbitrary dimensions. Constraints on
arbitrary coordinates are specified using keyword arguments. Each constraint must have two entries (a maximum and a
minimum) although one of these can be None. Datetime objects can be used to specify upper and lower datetime limits, or
a single PartialDateTime object can be used to specify a datetime range.

The keyword keys are used to find the relevant coordinate, they are looked for in order of name, standard_name,
axis and var_name.

For example:

data.subset(time=[datetime.datetime(1984, 8, 28), datetime.datetime(1984, 8, 29)],
 altitude=[45.0, 75.0])

will subset the data from the start of the 28th of August 1984, to the end of the 29th, and between altitudes of
45 and 75 (in whatever units ares used for that Coordinate).

And:

data.subset(time=[PartialDateTime(1984, 9)])

will subset the data to all of September 1984.

5.2.4. Plotting

Plotting can also easily be performed on these objects. Many options are available depending on the plot type, but CIS
will attempt to make a sensible default plot regardless of the datatype or dimensionality. The default method for
series data is ‘line’, otherwise (for e.g. a map plot) is ‘scatter2d’ for UngriddedData and ‘heatmap’ for GriddedData.

A matplotlib Axes is created if none is provided, meaning the user is able to reformat, or export the plot however they
like.

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

6. Getting file information

The info command provides a visual summary of the data within any of the data files CIS supports.

To get this summary, run a command of the format:

$ cis info <datagroup> [--type ["VD" | "SD"]]

where:

	<datagroup>

	is a CIS datagroup specifying the variables and files to read and is of the format
[<variable>...:]<filename>[:product=<productname>] where:

	variable is an optional variable or list of variables to use.

	filenames is a mandatory file or list of files to read from.

	product is an optional CIS data product to use (see Data Products):

Note that the product can only be specified if a variable is specified. See Datagroups for a more detailed explanation
of datagroups.

--type allows the user to list only SD or VD variables from an HDF file, the default is All

Running without a variable ($ cis info <filenames>) will print a list of the variables available in those files
such as:

Trop
latitude
longitude_1
surface
unspecified_1
level6
ht
msl
latitude_1

To get more specific information about one or more variables in those files, simply pass those as well:

$ cis info var1,var2:<filenames>

where $var1 and $var2 are the names of the variables to get the information for.

Here is an example output:

Ungridded data: SO4 / (ug m-3)
 Shape = (6478,)
 Total number of points = 6478
 Number of non-masked points = 6478
 Long name = Sulphate
 Standard name = SO4
 Units = ug m-3
 Missing value = -9999
 Range = (-0.57346399999999997, 7.0020300000000004)
 History =
 Coordinates:
 time
 Long name = Starting time
 Standard name = time
 Units = days since 1600-01-01 00:00:00
 Calendar = gregorian
 Missing value = -9999
 Range = ('2008-07-10 02:04:35', '2008-07-20 09:50:33')
 History =
 latitude
 Long name = Latitude
 Standard name = latitude
 Units = N degree
 Missing value = -9999
 Range = (4.0211802, 7.14886)
 History =
 longitude
 Long name = Longitude
 Standard name = longitude
 Units = E degree
 Missing value = -9999
 Range = (114.439, 119.733)
 History =
 altitude
 Long name = Altitude
 Standard name = altitude
 Units = m
 Missing value = -9999
 Range = (51.164299, 6532.6401)
 History =

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

7. Subsetting

Subsetting allows the reduction of data by extracting variables and restricting them to ranges of one or more coordinates.

To perform subsetting, run a command of the format:

$ cis subset <datagroup> <limits> [-o <outputfile>]

where:

	<datagroup>

	is a CIS datagroup specifying the variables and files to read and is of the format
<variable>...:<filename>[:product=<productname>] where:

	variable is a mandatory variable or list of variables to use.

	filenames is a mandatory file or list of files to read from.

	product is an optional CIS data product to use (see Data Products):

See Datagroups for a more detailed explanation of datagroups.

	<limits>

	is a comma separated sequence of one or more coordinate range assignments of the form variable=[start,end] or variable=[value] in which

	variable is the name of the variable to be subsetted, this can be the variable name (as it is in the data file) or it’s CF standard name.
It is also possible to use axes name shorthands such as x, y, t, z and p - which usually refer to longitude, latitude, time, altitude and pressure respectively.
However this approach can lead to confusion as these shorthands can be overridden by the files themselves, or the data readers, and may not always behave as expected.
For example when specifying ‘z’ for a gridded hybrid pressure file, this may well refer to sigma levels rather than altitude, and ‘p’ may not be found at all (it isn’t possible to subset over hybrid coordinates).
For this reason it is often safer to use variable names explicitly.

	start is the value at the start of the coordinate range to be included

	end is the value at the end of the coordinate range to be included

	value is taken as the start and end value.

Note

Longitude coordinates are considered to be circular, so that -10 is equivalent to 350. The start and end must
describe a monotonically increasing coordinate range, so x=[90,-90] is invalid, but could be specified
using x=[90,270]. The range between the start and end must not be greater than 360 degrees. The output
coordinates will be on the requested grid, not the grid of the source data.

Note

An arbitrary lat/lon shape can also be provided using the shape limit and passing a valid WKT string as the
argument, e.g. shape=POLYGON((-10 50, 0 60, 10 50, 0 40, -10 50)). See e.g.
https://en.wikipedia.org/wiki/Well-known_text for a description of the WKT format.

Note

Date/times are specified in the format: YYYY-MM-DDThh:mm:ss in which YYYY-MM-DD is a date and hh:mm:ss
is a time. A colon or space can be used instead of the ‘T’ separator (but if a space is used, the argument must be
quoted). Any trailing components of the date/time may be omitted. When a date/time is used as a range start, the
earliest date/time compatible with the supplied components is used (e.g., 2010-04 is treated as
2010-04-01T00:00:00) and when used as a range end, the latest compatible date/time is used. Including
optional and alternative components, the syntax is YYYY[-MM[-DD[{T|:| }hh[:mm[:ss]]]]]. When the
t=[value] form is used, value is interpreted as both the start and end value, as described above, giving a
range spanning the specified date/time, e.g., t=[2010] gives a range spanning the whole of the year 2010.

	outputfile

	is an optional argument to specify the name to use for the file output. This is automatically given a .nc extension. The default filename is out.nc.

A full example would be:

$ cis subset solar_3:xglnwa.pm.k8dec-k9nov.col.tm.nc longitude=[0,180],latitude=[0,90] -o Xglnwa-solar_3

Gridded netCDF data is output as gridded data, while ungridded and non-netCDF gridded data is output as ungridded data.

7.1. Examples

Below are examples of subsetting using each of the supported products (together with a command to plot the output):

$ cis subset AO2CO2:RF04.20090114.192600_035100.PNI.nc time=[2009-01-14:19:26:00,2009-01-14:19:36:00] -o RF04-AO2CO2-out
$ cis plot AO2CO2:RF04-AO2CO2-out.nc

$ cis subset IO_RVOD_ice_water_content:2007180125457_06221_CS_2B-CWC-RVOD_GRANULE_P_R04_E02.hdf t=[2007-06-29:13:00,2007-06-29:13:30] -o CloudSAT-out
$ cis plot IO_RVOD_ice_water_content:CloudSAT-out.nc --xaxis=time --yaxis=altitude

$ cis subset Cloud_Top_Temperature:MYD06_L2.A2011100.1720.051.2011102130126.hdf x=[-50,-40],y=[0,10] -o MODIS_L2-out
$ cis plot Cloud_Top_Temperature:MODIS_L2-out.nc

$ cis subset cwp:20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc x=[85,90],y=[-3,3] -o Cloud_CCI-out
$ cis plot atmosphere_mass_content_of_cloud_liquid_water:Cloud_CCI-out.nc

$ cis subset AOD870:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc x=[-5,20],y=[15,25] -o Aerosol_CCI-out
$ cis plot atmosphere_optical_thickness_due_to_aerosol:Aerosol_CCI-out.nc

$ cis subset 440675Angstrom:920801_121229_Abracos_Hill.lev20 t=[2002] -o Aeronet-out
$ cis plot 440675Angstrom:Aeronet-out.nc --xaxis=time --yaxis=440675Angstrom

$ cis subset solar_3:xglnwa.pm.k8dec-k9nov.vprof.tm.nc y=[0,90] -o Xglnwa_vprof-out
$ cis plot solar_3:Xglnwa_vprof-out.nc

$ cis subset solar_3:xglnwa.pm.k8dec-k9nov.col.tm.nc x=[0,180],y=[0,90] -o Xglnwa-out
$ cis plot solar_3:Xglnwa-out.nc

$ cis subset Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf x=[0,179.9],y=[0,90] -o MODIS_L3-out
$ cis plot Cloud_Top_Temperature_Mean_Mean:MODIS_L3-out.nc

The files used above can be found at:

/group_workspaces/jasmin/cis/jasmin_cis_repo_test_files/
 2007180125457_06221_CS_2B-CWC-RVOD_GRANULE_P_R04_E02.hdf
 20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc
 20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc
 MOD08_E3.A2010009.005.2010026072315.hdf
 MYD06_L2.A2011100.1720.051.2011102130126.hdf
 RF04.20090114.192600_035100.PNI.nc
 xglnwa.pm.k8dec-k9nov.col.tm.nc
 xglnwa.pm.k8dec-k9nov.vprof.tm.nc
/group_workspaces/jasmin/cis/data/aeoronet/AOT/LEV20/ALL_POINTS/
 920801_121229_Abracos_Hill.lev20

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

8. Aggregation

The Community Intercomparison Suite (CIS) has the ability to aggregate both gridded and ungridded data along one or
more coordinates. For example, you might aggregate a dataset over the longitude coordinate to produce an averaged
measurement of variation over latitude.

CIS supports ‘collapse’ of a coordinate - where all values in that dimension are aggregated so that the
coordinate no longer exists - and ‘aggregation’ - where a coordinate is aggregated into bins of fixed size,
so that the coordinate still exists but is on a coarser grid. Aggregation is currently only supported for ungridded
data. The output of either type of aggregation is always a CF compliant gridded NetCDF file.

The aggregation command has the following syntax:

$ cis <collapse|aggregate> <datagroup>[:options] <grid> [-o <outputfile>]

where:

	<datagroup>

	is a CIS datagroup specifying the variables and files to read and is of the format
<variable>...:<filename>[:product=<productname>] where:

	<variable> is a mandatory variable or list of variables to use.

	<filenames> is a mandatory file or list of files to read from.

	<productname> is an optional CIS data product to use (see Data Products):

See Datagroups for a more detailed explanation of datagroups.

	<options>

	Optional arguments given as keyword=value in a comma separated list. Options are:

	kernel=<kernel> - the method by which the value in each aggregation cell is determined. <kernel> should be
one of:

	sum - return the sum of all of the data points in that aggregation cell.

	mean - use the mean value of all the data points in that aggregation cell. For gridded data, this mean is
weighted to take into account differing cell areas due to the projection of lat/lon lines on the Earth.

	min - use the lowest valid value of all the data points in that aggregate cell.

	max - use the highest valid value of all the data points in that aggregate cell.

	moments - In addition to returning the mean value of each cell (weighted where applicable), this kernel also
outputs the number of points used to calculate that mean and the standard deviation of those values, each as a
separate variable in the output file.

If not specified the default is moments.

	product=<productname> is an optional argument used to specify the type of files being read. If omitted, CIS
will attempt to figure out which product to use based on the filename. See Reading to see a
list of available product names and their file signatures.

	<grid>

	This mandatory argument specifies the coordinates to aggregate over and whether they should be completely collapsed
or aggregated into bins. Multiple coordinates can be aggregated over, in which case they should be separated by commas.
Coordinates may be identified using their variable names (e.g. latitude), standard names, or using the axes shorthands: x, y, t,
z and p which refer to longitude, latitude, time, altitude and pressure respectively.

Note

The axes shorthands are used throughout the examples here, but should be used with care, as the expected coordinate
may not always be chosen. For example when specifying ‘z’ for a gridded hybrid height file, this may well refer to
model level number rather than altitude. For this reason it is often safer to use variable names explicitly.

	Complete collapse - To perform a complete collapse of a coordinate, simply provide the name of the coordinate(s)
as a comma separated list - e.g. x,y will aggregate data completely over both latitude and longitude. For
ungridded data this will result in length one coordinates with bounds reflecting the maximum and minimum values of the
collapsed coordinate.

	Partial collapse - To aggregate a coordinate into bins, specify the start, end and step size of those bins in the
form coordinate=[start,end,step]. The step may be missed out, in which case the bin will span the whole range
given. Partial collapse is currently only supported for ungridded data.

Longitude coordinates are considered to be circular, so that -10 is equivalent to 350. The start and end must
describe a monotonically increasing coordinate range, so x=[90,-90,10] is invalid, but could be specified
using x=[90,270,10]. The range between the start and end must not be greater than 360 degrees.

Complete and partial collapses may be mixed where applicable - for example, to completely collapse time and to
aggregate latitude on a grid from -45 degrees to 45 degrees, using a step size of 10 degrees:

t,y=[-45,45,10]

Note

For ungridded data, if a coordinate is left unspecified it is collapsed completely. This is in contrast to
gridded data where a coordinate left unspecified is not used in the aggregation at all.

Note

The range specified is the very start and end of the grid, the actual midpoints of the aggregation cells will start at start + delta/2.

Date/times:

Date/times are specified in the format: YYYY-MM-DDThh:mm:ss in which YYYY-MM-DD is a date and hh:mm:ss is
a time. A colon or space can be used instead of the ‘T’ separator (but if a space is used, the argument must be quoted).
Any trailing components of the date/time may be omitted. When a date/time is used as a range start, the earliest
date/time compatible with the supplied components is used (e.g., 2010-04 is treated as 2010-04-01T00:00:00)
and when used as a range end, the latest compatible date/time is used. Including optional and alternative components,
the syntax is YYYY[-MM[-DD[{T|:| }hh[:mm[:ss]]]]].

Date/time steps are specified in the ISO 8601 format PnYnMnDTnHnMnS, where any particular time period is optional,
for example P1MT30M would specify a time interval of 1 month and 30 minutes. Years and months are treated as
calendar years and months, meaning they are not necessarily fixed in length. For example a date interval of 1 year and
1 month would mean going from 12:00 15th April 2013 to 12:00 15th May 2013. The are two exceptions to this, in rare
cases such as starting at 30th January and going forward 1 month, the month is instead treated as a period of 28 days.
Also, for the purposes of finding midpoints for the start in a month the month is always treated as 30 days. For
example, to start on the 3rd November 2011 at 12:00 and aggregate over each month up to 3rd January 2013 at 12:00:

	t=[2011-11-03T12:00,2013-01,P1M]

Multi-dimensional gridded coordinates

Some gridded coordinates can span multiple dimensions, such as hybrid height. These coordinates can be aggregated over
as normal, but note that if you only aggregate over a subset of the dimensions a mean kernel will always be used, and
no area weighting will be taken into account.

	<outputfile>

	is an optional argument to specify the name to use for the file output. This is automatically given a .nc extension if not
present. This must not be the same file path as any of the input files. If not supplied, the default filename is out.nc.

A full example would be:

$ cis aggregate rsutcs:rsutcs_Amon_HadGEM2-A_sstClim_r1i1p1_*.nc:product=NetCDF_Gridded,kernel=mean t,y=[-90,90,20],x -o rsutcs-mean

8.1. Conditional Aggregation

Sometimes you may want to perform an aggregation over all the points that meet a certain criteria - for example,
aggregating satellite data only where the cloud cover fraction is below a certain threshold. This is possible by
performing a CIS evaluation on your data first - see Using Evaluation for Conditional Aggregation

8.2. Aggregation Examples

8.2.1. Ungridded aggregation

8.2.1.1. Aircraft Track

Original data:

$ cis plot TT_A:RF04.20090114.192600_035100.PNI.nc --xmin -180 --xmax -120 --ymin 0 --ymax 90

[image: _images/NCAR-RAF-1.png]

Aggregating onto a coarse grid:

$ cis aggregate TT_A:RF04.20090114.192600_035100.PNI.nc x=[-180,-120,3],y=[0,90,3] -o NCAR_RAF-1
$ cis plot TT_A:NCAR_RAF-1.nc

[image: _images/NCAR-RAF-2.png]

Aggregating onto a fine grid:

$ cis aggregate TT_A:RF04.20090114.192600_035100.PNI.nc x=[180,240,0.3],y=[0,90,0.3] -o NCAR_RAF-2
$ cis plot TT_A:NCAR_RAF-2.nc

[image: _images/NCAR-RAF-3.png]

Aggregating with altitude and time:

$ cis aggregate TT_A:RF04.20090114.192600_035100.PNI.nc t=[2009-01-14T19:30,2009-01-15T03:45,30M],z=[0,15000,1000] -o NCAR_RAF-3
$ cis plot TT_A:NCAR_RAF-3.nc --xaxis time --yaxis altitude

[image: _images/NCAR-RAF-4.png]

Aggregating with altitude and pressure:

$ cis aggregate TT_A:RF04.20090114.192600_035100.PNI.nc p=[100,1100,20],z=[0,15000,500] -o NCAR_RAF-4
$ cis plot TT_A:NCAR_RAF-4.nc --xaxis altitude --yaxis air_pressure --logy

[image: _images/NCAR-RAF-5.png]

8.2.1.2. MODIS L3 Data

Original data:

$ cis plot Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf

[image: _images/MODIS-6.png]

Aggregating with a mean kernel:

$ cis aggregate Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf x=[-180,180,10],y=[-90,90,10] -o cloud-mean
$ cis plot Cloud_Top_Temperature_Mean_Mean:cloud-mean.nc

[image: _images/MODIS-7.png]

Aggregating with the standard deviation kernel:

$ cis aggregate Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf:kernel=stddev x=[-180,180,10],y=[-90,90,10] -o cloud-stddev
$ cis plot Cloud_Top_Temperature_Mean_Mean:cloud-stddev.nc &

[image: _images/MODIS-7.png]

Aggregating with the maximum kernel:

$ cis aggregate Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf:kernel=max x=[-180,180,10],y=[-90,90,10] -o cloud-max
$ cis plot Cloud_Top_Temperature_Mean_Mean:cloud-max.nc

[image: _images/MODIS-9.png]

Aggregating with the minimum kernel:

$ cis aggregate Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf:kernel=min x=[-180,180,10],y=[-90,90,10] -o cloud-min
$ cis plot Cloud_Top_Temperature_Mean_Mean:cloud-min.nc

[image: _images/MODIS-10.png]

8.2.2. Gridded collapse

Collapsing 3D model data over time and longitude to produce an averaged measure of variation with latitude:

$ cis collapse rsutcs:rsutcs_Amon_HadGEM2-A_sstClim_r1i1p1_185912-188911.nc:kernel=mean t,x -o agg-out.nc
$ cis plot rsutcs:agg-out.nc --xaxis latitude --yaxis rsutcs -o gridded_collapse.png

[image: _images/gridded_collapse.png]

This file can be found in:

/group_workspaces/jasmin/cis/data/CMIP5

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

9. Collocation

One of the key features of the Community Intercomparison Suite (CIS) is the ability to collocate one or
more arbitrary data sets onto a common set of coordinates. This page briefly describes how to perform collocation
in a number of scenarios.

To perform collocation, run a command of the format:

$ cis col <datagroup> <samplegroup> -o <outputfile>

where:

	<datagroup>

	is a CIS datagroup specifying the variables and files to read and is of the format
<variable>...:<filename>[:product=<productname>] where:

	<variable> is a mandatory variable or list of variables to use.

	<filenames> is a mandatory file or list of files to read from.

	<productname> is an optional CIS data product to use (see Data Products):

See Datagroups for a more detailed explanation of datagroups.

	<samplegroup>

	is of the format <filename>[:<options>] The available options are described in more detail below. They are entered
in a comma separated list, such as variable=Temperature,collocator=bin,kernel=mean. Not all combinations of
collocator and data are available; see Available Collocators.

	<filename> is a single filename with the points to collocate onto.

	variable is an optional argument used to specify which variable’s coordinates to use for collocation.
If a variable is specified, a missing value will be set in the output file at every point for which the sample
variable has a missing value. If a variable is not specified, non-missing values will be set at all sample points
unless collocation at a point does not result in a valid value. This can be overridden by using the
missing_data_for_missing_sample argument described below.

	collocator is an optional argument that specifies the collocation method. Parameters for the collocator, if any,
are placed in square brackets after the collocator name, for example, collocator=box[fill_value=-999,h_sep=1km].
If not specified, a Default Collocator is identified for your data / sample combination.
The collocators available are:

	bin For use only with ungridded data and gridded sample points. Data points are placed in bins corresponding
to the cell bounds surrounding each grid point. The bounds are taken from the gridded data if they are defined,
otherwise the mid-points between grid points are used. The binned points should then be processed by one of the
kernels to give a numeric value for each bin.

	box For use with gridded and ungridded sample points and data. A search region is defined by the parameters
and points within the defined separation of each sample point are associated with the point. The points should
then be processed by one of the kernels to give a numeric value for each bin. The parameters defining the search box are:

	h_sep - the horizontal separation. The units can be specified as km or m (for example h_sep=1.5km); if
none are specified then the default is km.

	a_sep - the altitude separation. The units can be specified as km or m, as for h_sep; if none are specified
then the default is m.

	p_sep - the pressure separation. This is not an absolute separation as for h_sep and a_sep, but a relative
one, so is specified as a ratio. For example a constraint of p_sep = 2, for a point at 10 hPa, would cover the
range 5 hPa < points < 20 hPa. Note that p_sep >= 1.

	t_sep - the time separation. This can be specified in years, months, days, hours, minutes or seconds using
PnYnMnDTnHnMnS (the T separator can be replaced with a colon or a space, but if using a space quotes are
required). For example to specify a time separation of one and a half months and thirty minutes you could use
t_sep=P1M15DT30M. It is worth noting that the units for time comparison are fractional days, so that
years are converted to the number of days in a Gregorian year, and months are 1/12th of a Gregorian year.

If h_sep is specified, a k-d tree index based on longitudes and latitudes of data points is used to speed up
the search for points. It h_sep is not specified, an exhaustive search is performed for points satisfying the
other separation constraints.

	lin For use with gridded source data only. A value is calculated by linear interpolation for each sample point.
The extrapolation mode can be controlled with the extrapolate keyword. The default mode is not to extrapolate values
for sample points outside of the gridded data source (masking them in the output instead). Setting extrapolate=True
will override this and instruct the kernel to extrapolate these values outside of the data source instead.

	nn For use with gridded source data only. The data point closest to each sample point is found, and the
data value is set at the sample point. As with linear interpolation the extrapolation mode can be controlled
with the extrapolate keyword.

	dummy For use with ungridded data only. Returns the source data as the collocated data irrespective of the
sample points. This might be useful if variables from the original sample file are wanted in the output file but
are already on the correct sample points.

Collocators have the following general optional parameters, which can be used in addition to any specific ones listed above:

	fill_value - The numerical value to apply to the collocated point if there are no points which satisfy the constraint.

	var_name - Specifies the name of the variable in the resulting NetCDF file.

	var_long_name - Specifies the variable’s long name.

	var_units - Specifies the variable’s units.

	missing_data_for_missing_sample - Allows the user to specify explicitly whether masked sample data points
should be used for sampling. This only applies when a variable has been specified in the samplegroup.

	kernel is used to specify the kernel to use for collocation methods that create an intermediate set of points for
further processing, that is box and bin. The default kernel for box and bin is moments. The built-in kernel
methods currently available are:

	moments - Default. This is an averaging kernel that returns the mean, standard deviation and the number of points remaining after
the specified constraint has been applied. This can be used for gridded or ungridded sample points where the
collocator is one of ‘bin’ or ‘box’. The names of the variables in the output file are the name of the input
variable with a suffix to identify which quantity they represent:
	Mean - no suffix - the mean value of all data points which were mapped to that sample grid point
(data points with missing values are excluded)

	Standard Deviation - suffix: _std_dev - The corrected sample standard deviation (i.e. 1 degree of
freedom) of all the data points mapped to that sample grid point (data points with missing values are excluded)

	Number of points - suffix: _num_points - The number of data points mapped to that sample grid point
(data points with missing values are excluded)

	mean - an averaging kernel that returns the mean values of any points found by the collocation method

	nn_t (or nn_time) - nearest neighbour in time algorithm

	nn_h (or nn_horizontal) - nearest neighbour in horizontal distance

	nn_a (or nn_altitude) - nearest neighbour in altitude

	nn_p (or nn_pressure) - nearest neighbour in pressure (as in a vertical coordinate). Note that similarly to the
p_sep constraint that this works on the ratio of pressure, so the nearest neighbour to a point with a value of
10 hPa, out of a choice of 5 hPa and 19 hPa, would be 19 hPa, as 19/10 < 10/5.

	product is an optional argument used to specify the type of files being read. If omitted, the program will
attempt to determine which product to use based on the filename, as listed at Reading.

	<outputfile>

	is an optional argument specifying the file to output to. This will be automatically given a .nc extension if not
present. This must not be the same file path as any of the input files. If not provided, the default output filename
is out.nc

A full example would be:

$ cis col rain:"my_data_??.*" my_sample_file:collocator=box[h_sep=50km,t_sep=6000S],kernel=nn_t -o my_col

Warning

When collocating two data sets with different spatio-temporal domains, the sampling points should be
within the spatio-temporal domain of the source data. Otherwise, depending on the collocation options selected,
strange artifacts can occur, particularly with linear interpolation. Spatio-temporal domains can be reduced in
CIS with Aggregation or Subsetting.

9.1. Available Collocators and Kernels

	Collocation type
	
	
	

	(data -> sample)
	Available Collocators
	Default Collocator
	Default Kernel

	Gridded -> gridded
	lin, nn, box
	lin
	None

	Ungridded -> gridded
	bin, box
	bin
	moments

	Gridded -> ungridded
	lin, nn
	lin
	None

	Ungridded -> ungridded
	box
	box
	moments

9.2. Collocation output files

Output data files are suffixed with .nc (so there is no need to specify the extension in the output parameter).

It is worth noting that in the process of collocation all of the data and sample points are represented as 1-d lists, so any structural information about the input files is lost. This is done to ensure consistency in the collocation output. This means, however, that input files which may have been plotable as, for example, a heatmap may not be after collocation. In this situation plotting the data as a scatter plot will yield the required results.

Each collocated output variable has a history attributed created (or appended to) which contains all of the parameters and file names which went into creating it. An example might be:

double mass_fraction_of_cloud_liquid_water_in_air(pixel_number) ;
 ...
 mass_fraction_of_cloud_liquid_water_in_air:history = "Collocated onto sampling from: [\'/test/test_files/RF04.20090114.192600_035100.PNI.nc\'] using CIS version V0R4M4\n",
 "variable: mass_fraction_of_cloud_liquid_water_in_air\n",
 "with files: [\'/test/test_files/xenida.pah9440.nc\']\n",
 "using collocator: DifferenceCollocator\n",
 "collocator parameters: {}\n",
 "constraint method: None\n",
 "constraint parameters: None\n",
 "kernel: None\n",
 "kernel parameters: None" ;
 mass_fraction_of_cloud_liquid_water_in_air:shape = 30301 ;
double difference(pixel_number) ;
 ...

9.3. Writing your own plugins

The collocation framework was designed to make it easy to write your own plugins. Plugins can be written to create
new kernels, new constraint methods and even whole collocation methods. See the
analysis plugin development section for more details.

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

10. Collocation Examples

10.1. Ungridded to Ungridded Collocation Examples

10.1.1. Ungridded data with vertical component

First subset two Caliop data files:

$ cis subset Temperature:CAL_LID_L2_05kmAPro-Prov-V3-01.2009-12-31T23-36-08ZN.hdf x=[170,180],y=[60,80],z=[28000,29000],p=[13,15] -o 2009
$ cis subset Temperature:CAL_LID_L2_05kmAPro-Prov-V3-01.2010-01-01T00-22-28ZD.hdf x=[170,180],y=[60,80],z=[28000,29000],p=[12,13.62] -o 2010

Results of subset can be plotted with:

$ cis plot Temperature:2009.nc --itemwidth 25 --xaxis time --yaxis air_pressure
$ cis plot Temperature:2010.nc --itemwidth 25 --xaxis time --yaxis air_pressure

Then collocate data, and plot output:

$ cis col Temperature:2010.nc 2009.nc:collocator=box[p_sep=1.1],kernel=nn_p
$ cis plot Temperature:out.nc --itemwidth 25 --xaxis time --yaxis air_pressure

The output for the two subset data files, and the collocated data should look like:

[image: _images/2009-subset.png]
[image: _images/2010-subset.png]
[image: _images/PressureCollocation.png]

10.1.1.1. File Locations

The files used above can be found at:

/group_workspaces/jasmin/cis/data/caliop/CAL-LID-L2-05km-APro

10.1.2. Ungridded data collocation using k-D tree indexing

These examples show the syntax for using the k-D tree optimisation of the separation constraint. The indexing is only by horizontal position.

10.1.2.1. Nearest-Neighbour Kernel

The first example is of Aerosol CCI data on to the points of a MODIS L3 file (which is an ungridded data file but with points lying on a grid).

Subset to a relevant region:

$ cis subset AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc x=[-6,0],y=[20,30] -o AOD550n_3
$ cis subset Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf x=[-6,0],y=[20,30] -o MOD08n_3

The results of subsetting can be plotted with:

$ cis plot AOD550:AOD550n_3.nc --itemwidth 10
$ cis plot Cloud_Top_Temperature_Mean_Mean:MOD08n_3.nc --itemwidth 20

These should look like:

[image: _images/AOD550n_3.png]
[image: _images/MOD08n_3.png]
To collocate with the nearest-neighbour kernel use:

$ cis col Cloud_Top_Temperature_Mean_Mean:MOD08n_3.nc AOD550n_3.nc:collocator=box[h_sep=150],kernel=nn_h -o MOD08_on_AOD550_nn_kdt

This can be plotted with:

$ cis plot Cloud_Top_Temperature_Mean_Mean:MOD08_on_AOD550_nn_kdt.nc --itemwidth 10

The sample points are more closely spaced than the data points, hence a patchwork effect is produced.

[image: _images/MOD08_on_AOD550_nn_kdt.png]
Collocating the full Aerosol CCI file on to the MODIS L3 with:

$ cis col AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc MOD08_E3.A2010009.005.2010026072315.hdf:variable=Cloud_Top_Temperature_Mean_Mean,collocator=box[h_sep=150],kernel=nn_h -o AOD550_on_MOD08_kdt_nn_full

gives the following result

[image: _images/AOD550_on_MOD08_kdt_nn_full.png]

10.1.2.2. Mean Kernel

This example is similar to the first nearest-neighbour collocation above:

$ cis col Cloud_Top_Temperature_Mean_Mean:MOD08n_3.nc AOD550n_3.nc:collocator=box[h_sep=75],kernel=mean -o MOD08_on_AOD550_hsep_75km

Plotting this again gives a granular result:

$ cis plot Cloud_Top_Temperature_Mean_Mean:MOD08_on_AOD550_hsep_75km.nc --itemwidth 10

[image: _images/MOD08_on_AOD550_hsep_75km.png]
This example collocates the Aerosol CCI data on to the MODIS L3 grid:

$ cis col AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc MOD08_E3.A2010009.005.2010026072315.hdf:variable=Cloud_Top_Temperature_Mean_Mean,collocator=box[h_sep=50,fill_value=-999],kernel=mean -o AOD550_on_MOD08_kdt_hsep_50km_full

This can be plotted as follows, with the full image and zoomed into a representative section show below:

$ cis plot AOD550:AOD550_on_MOD08_kdt_hsep_50km_full.nc --itemwidth 50

[image: _images/AOD550_on_MOD08_kdt_hsep_50km_full.png]
[image: _images/AOD550_on_MOD08_kdt_hsep_50km_full_zoom.png]
The reverse collocation can be performed with this command (taking about 7 minutes):

$ cis col Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf 20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc:variable=AOD550,collocator=box[h_sep=100,fill_value=-999],kernel=mean -o MOD08_on_AOD550_kdt_hsep_100km_var_full

Plotting it with this command gives the result below:

$ cis plot Cloud_Top_Temperature_Mean_Mean:MOD08_on_AOD550_kdt_hsep_100km_var_full.nc

[image: _images/MOD08_on_AOD550_kdt_hsep_100km_var_full.png]
Omitting the variable option in the sample group gives collocated values over a full satellite track (taking about 30 minutes):

$ cis col Cloud_Top_Temperature_Mean_Mean:MOD08_E3.A2010009.005.2010026072315.hdf 20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc:collocator=box[h_sep=100,fill_value=-999],kernel=mean -o MOD08_on_AOD550_kdt_hsep_100km_full

Plotting it with this command gives the result below:

$ cis plot Cloud_Top_Temperature_Mean_Mean:MOD08_on_AOD550_kdt_hsep_100km_full.nc

[image: _images/MOD08_on_AOD550_kdt_hsep_100km_full.png]

10.1.2.3. File Locations

The files used above can be found at:

/group_workspaces/jasmin/cis/jasmin_cis_repo_test_files/
 20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc
 MOD08_E3.A2010009.005.2010026072315.hdf

10.2. Examples of collocation of ungridded data on to gridded

10.2.1. Simple Example of Aerosol CCI Data on to a 4x4 Grid

This is a trivial example that collocates on to a 4x4 spatial grid at a single time:

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_r1i1p1_20051201-20151130.nc x=[0,2],y=[24,26],t=[2008-06-12T1,2008-06-12] -o tas_day_HadGEM2-ES_rcp45_r1i1p1_20051201-20151130.nc -o tas_1

$ cis subset AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc x=[0,2],y=[24,26] -o AOD550n_1

$ cis col AOD550:AOD550n_1.nc tas_1.nc:collocator=bin[fill_value=-9999.0],kernel=mean -o AOD550_on_tas_1

$ cis plot AOD550:AOD550_on_tas_1.nc

Note that for ungridded gridded collocation, and the collocator must be one bin or box and a kernel such as “mean” must be used.

The plotted image looks like:

[image: _images/Aerosol_CCI_4x4.png]

10.2.2. Aerosol CCI with Three Time Steps

This example involves collocation on to a grid with three time steps. The ungridded data all has times within the middle step, so the output has missing values for all grid points with the time equal to the first or third value. This can be seen using ncdump:

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_r1i1p1_20051201-20151130.nc x=[-6,-.0001],y=[20,30],t=[2008-06-11T1,2008-06-13] -o tas_3day

$ cis subset AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc x=[-6,0],y=[20,30] -o AOD550n_3

$ cis col AOD550:AOD550n_3.nc tas_3day.nc:collocator=bin[fill_value=-9999.0],kernel=mean -o AOD550_on_tas_3day

$ ncdump AOD550_on_tas_3day.nc |less

10.2.3. Aerosol CCI with One Time Step

This is as above but subsetting the grid to one time step so that the output can be plotted directly:

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_r1i1p1_20051201-20151130.nc t=[2008-06-12T1,2008-06-12] -o tas_2008-06-12

$ cis col AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc tas_2008-06-12.nc:collocator=bin[fill_value=-9999.0],kernel=mean -o AOD550_on_tas_1day

$ cis plot AOD550:AOD550_on_tas_1day.nc
$ cis plot AOD550:20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc
$ cis plot tas:tas_2008-06-12.nc

These are the plots before and after collocation:

[image: _images/Aerosol_CCI.png]
[image: _images/Aerosol_CCI_col.png]

10.2.4. Example with NCAR RAF Data

This example uses the data in RF04.20090114.192600_035100.PNI.nc. However, this file does not have standard_name or units accepted as valid by Iris. These were modified using ncdump and ncgen, giving RF04_fixed_AO2CO2.nc:

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_r1i1p1_20051201-20151130.nc t=[2009-01-14T1,2009-01-14] -o tas_2009-01-14

$ cis col AO2CO2:RF04_fixed_AO2CO2.nc tas_2009-01-14.nc:collocator=bin[fill_value=-9999.0],kernel=mean -o RF04_on_tas

$ cis plot AO2CO2:RF04_on_tas.nc:product=NetCDF_Gridded

These are the plots before and after collocation:

[image: _images/RF04.png]
[image: _images/RF04_col.png]

10.2.5. Cloud CCI with One Time Step

This is analogous to the Aerosol CCI example:

$ cis subset tas:tas_day_HadGEM2-ES_rcp45_r1i1p1_20051201-20151130.nc t=[2008-06-20T1,2008-06-20] -o tas_2008-06-20

$ cis col cwp:20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc tas_2008-06-20.nc:collocator=bin[fill_value=-9999.0],kernel=mean -o Cloud_CCI_on_tas

$ cis plot cwp:Cloud_CCI_on_tas.nc
$ cis plot cwp:20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc

These are the plots before and after collocation:

[image: _images/Cloud_CCI.png]
[image: _images/Cloud_CCI_col.png]

10.2.6. File Locations

The files used above can be found at:

/group_workspaces/jasmin/cis/jasmin_cis_repo_test_files/
 20080612093821-ESACCI-L2P_AEROSOL-ALL-AATSR_ENVISAT-ORAC_32855-fv02.02.nc
 20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc
 RF04.20090114.192600_035100.PNI.nc
/group_workspaces/jasmin/cis/example_data/
 RF04_fixed_AO2CO2.nc
/group_workspaces/jasmin/cis/gridded-test-data/cmip5.output1.MOHC.HadGEM2-ES.rcp45.day.atmos.day.r1i1p1.v20111128/
 tas_day_HadGEM2-ES_rcp45_r1i1p1_20051201-20151130.nc

10.3. Examples of Gridded to Gridded Collocation

10.3.1. Example of Gridded Data onto a Finer Grid

First to show original data subset to a single time slice:

$ cis subset rsutcs:rsutcs_Amon_HadGEM2-A_sstClim_r1i1p1_185912-188911.nc t=[1859-12-12] -o sub1

Plot for subset data:

$ cis plot rsutcs:sub1.nc

Collocate onto a finer grid, which was created using nearest neighbour:

$ cis col rsutcs:rsutcs_Amon_HadGEM2-A_sstClim_r1i1p1_185912-188911.nc dummy_high_res_cube_-180_180.nc:collocator=nn -o 2
$ cis subset rsutcs:2.nc t=[1859-12-12] -o sub2
$ cis plot rsutcs:sub2.nc

Collocate onto a finer grid, which was created using linear interpolation:

$ cis col rsutcs:rsutcs_Amon_HadGEM2-A_sstClim_r1i1p1_185912-188911.nc dummy_high_res_cube_-180_180.nc:collocator=lin -o 3
$ cis subset rsutcs:3.nc t=[1859-12-12] -o sub3
$ cis plot rsutcs:sub3.nc

Before, after nearest neighbour and after linear interpolation:

[image: _images/OriginalData.png]
[image: _images/HorizontalNN.png]
[image: _images/HorizontalLI.png]

10.3.2. 4D Gridded Data with latitude, longitude, air_pressure and time to a New Grid

$ cis col temp:aerocom.INCA.A2.RAD-CTRL.monthly.temp.2006-fixed.nc dummy_low_res_cube_4D.nc:collocator=lin -o 4D-col

Note the file aerocom.INCA.A2.RAD-CTRL.monthly.temp.2006-fixed.nc has the standard name of presnivs changed to air_pressure, in order to be read correctly.

10.3.2.1. Slices at Different Pressures

$ cis subset temp:4D-col.nc t=[2006-01],z=[100000] -o sub9
$ cis plot temp:sub9.nc
$ cis subset temp:4D-col.nc t=[2006-01],z=[0] -o sub10
$ cis plot temp:sub10.nc

[image: _images/PressureSlice1.png]
[image: _images/PressureSlice2.png]

10.3.2.2. Pressure against time

$ cis subset temp:4D-col.nc x=[0],t=[2006-01] -o sub11
$ cis plot temp:sub11.nc --xaxis latitude --yaxis air_pressure
$ cis subset temp:aerocom.INCA.A2.RAD-CTRL.monthly.temp.2006-fixed.nc x=[0],t=[2006-01] -o sub12
$ cis plot temp:sub12.nc --xaxis latitude --yaxis air_pressure

[image: _images/PressureCollocated.png]
[image: _images/PressureOriginal.png]

10.3.3. File Locations

The files used above can be found at:

/group_workspaces/jasmin/cis/sprint_reviews/SR4-IB/gridded_col2

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

11. Plotting

Plotting is straightforward:

$ cis plot variable:filenames

This will attempt to locate the variable variable in all of the specified filenames, work out its metadata, such as units, labels, etc. and the appropriate chart type to plot, so that a line graph is used for two dimensional data, a scatter plot is used for three dimensional ungridded data and a heatmap for three dimensional gridded data. Other types of chart can be specified using the --type option. Available types are:

	line

	a simple line plot, for three dimensional data the third variable is represented by the line colour

	scatter

	a scatter plot

	scatter2d

	a scatter plot with two coordinate axis and the data represented by the colour of the marker

	heatmap

	a heatmap especially suitable for gridded data

	contour

	a standard contour plot, see contour options

	contourf

	a filled contour plot, see contour options

histogram2d

histogram

	comparativescatter

	allows two variables to be plotted against each other, specified as cis plot variable1:filename1 variable2:filename2 --type comparativescatter

	taylor

	a Taylor diagram for comparing collocated datasets. See Taylor, K. E. (2001), ‘Summarizing multiple aspects of model performance in a single diagram’, J. Geophys. Res., 106(D7), 7183–7192, doi:10.1029/2000JD900719 for a detailed description.

Note that filenames is a non-optional argument used to specify the files to read the variable from. These can be specified as a comma separated list of the following possibilities:

	A single filename - this should be the full path to the file

	A single directory - all files in this directory will be read

	A wildcarded filename - A filename with any wildcards compatible with the python module glob, so that *, ? and [] can all be used. For example /path/to/my/test*file_[0-9].

Note that when using option 2, the filenames in the directory will be automatically sorted into alphabetical order. When using option 3, the filenames matching the wildcard will also be sorted into alphabetical order. The order of the comma separated list will however remain as the user specified, e.g.:

$ cis plot $var:filename1,filename2,wildc*rd,/my/dir/,filename3

would read filename1, then filename2, then all the files that match wildc*rd (in alphabetical order), then all the files in the directory /my/dir/ (in alphabetical order) and then finally filename3.

11.1. Plot Options

There are a number of optional arguments, which should be entered as a comma separated list after the mandatory arguments, for example variable:filename:product=Cis,edgecolor=black. The options are:

	color

	colour of markers, e.g. for scatter plot points or contour lines, see Available Colours and Markers

	cmap

	colour map to use, e.g. for contour lines or heatmap, see Available Colours and Markers

	vmin

	the minimum value for the colourmap

	vmax

	the maximum value for the colourmap

	edgecolor

	colour of scatter marker edges (can be used to differentiate scatter markers with a colourmap from the background plot)

	itemstyle

	shape of scatter marker, see Available Colours and Markers

	itemwidth

	width of an item. Units are points in the case of a line, and points^2 in the case of a scatter point

	label

	name of datagroup for the legend

	product

	the data product to use for the plot

	type

	the type of plot for that layer. This can’t be set if the global type has been set.

	alpha

	the transparancy of that layer

	cbarlabel

	The label for the colorbar

	cbarorient

	The orientation of the colour bar, either horizontal or vertical

	nocolourbar

	Hides the colour bar on a 3D plot

	cbarscale

	this can be used to change the size of the colourbar when plotting and defaults to 0.55 for vertical colorbars, 1.0
for horizontal.

Additional datagroup options for contour plots only:

	contnlevels

	the number of levels for the contour plot

	contlevels

	a list of levels for the contour plot, e.g. contlevels=[0,1,3,10]

	contlabel

	options are true or false, if true then contour labels are shown

	contwidth

	width of the contour lines

Note that label refers to the label the plot will have on the legend, for example if a multi-series line graph or scatter plot is plotted. To set the labels of the axes, use --xlabel and --ylabel. --cbarlabel can be used to set the label on the colour bar.

The axes can be specified with --xaxis and --yaxis. Gridded data supports any coordinate axes available in the file, while ungridded data supports the following coordinate options (if available in the data):

	latitude

	longitude

	time

	altitude

	air_pressure

	variable - the variable being plotted

If the product is not specified, the program will attempt to figure out which product should be used based on the filename. See What kind of data can CIS deal with? to see a list of available products and their file signatures, or run cis plot -h.

11.2. Saving to a File

By default a plot will be displayed on screen. To save it to an image file instead, use the --output option. Available output types are png, pdf, ps, eps and svg, which can be selected using the appropriate filename extension, for example --output plot.svg.

11.3. Plot Formatting

There are a number of plot formatting options available:

	--xlabel

	The label for the x axis

	--ylabel

	The label for the y axis

	--title

	The title of the plot

	--fontsize

	The size of the font in points

	--cmap

	The colour map to be used when plotting a 3D plot, see Available Colours and Markers

	--projection

	The projection to use for the map-plot. All Cartopy projections are supported, see http://scitools.org.uk/cartopy/docs/latest/crs/projections.html for a full list.

	--height

	The height of the plot, in inches

	--width

	The width of the plot, in inches

	--xbins

	The number of bins on the x axis of a histogram

	--ybins

	The number of bins on the y axis of a histogram

	--grid

	Shows grid lines

	--coastlinescolour

	The colour of the coastlines on a map, see Available Colours and Markers

	--nasabluemarble

	Use the NASA Blue Marble for the background, instead of coastlines, when doing lat-lon plots

	--bias

	Plot the bias between the data sets using specified mechanism. Can be either ‘color’, ‘colour’, ‘size’ or ‘flag’

	--solid

	Use solid markers

	--extend

	Extend plot for negative correlation

	--fold

	Fold plot for negative correlation or large variance

	--gammamax

	Fix maximum extent of radial axis

	--stdbiasmax

	Fix maximum standardised bias

11.4. Setting Plot Ranges

The arguments --xmin, --xmax, --xstep, --ymin, --ymax, --ystep, --vmin, --vmax, --vstep can be used to specify the range of values to plot, where x and y correspond to the axes and v corresponds to the colours.

When the arguments refer to dates or times, they should be in the format YYYY-MM-DDThh:mm:ss, where the time is optional. A colon or a space is also a valid date and time separator (if using a space quotes are necessary).

The step arguments are used to specify the tick spacing on the axes and vstep is used to specify the tick spacing on the colorbar.

When the step arguments refer to an amount of time, they should be in the ISO 8601 format PnYnMnDTnHnMnS, where any particular time group is optional, case does not matter, and T can be substituted for either a colon or a space (if using a space quotes are necessary).

For example, to specify a tick spacing of one month and six seconds on the x axis, the following argument should be given:
--xstep 1m6S

Note: If a value is negative, then an equals sign must be used, e.g.
--xmin=-5.

To plot using a log scale:

	--logx

	The x axis will be plotted using a log scale of base 10

	--logy

	The y axis will be plotted using a log scale of base 10

	--logv

	The values (colours) will be plotted using a log scale of base 10

11.5. Overlaying Multiple Plots

Overlaying multiple plots is straightforward, simply use the plot command as before but specify multiple files and variables, e.g.:

$ cis plot $var1:$filename1:edgecolor=black $var2:$filename2:edgecolor=red

To plot two variables from the same file, simply use the above command with $filename1 in place of $filename2.

The type paramter can be used to specify different types for each layer. For example, to plot a heatmap and a contour plot the following options can be used:

cis plot var1:file1:type=heatmap var2:file2:type=contour,color=white --width 20 --height 15 --cbarscale 0.5 -o overlay.png

Note that the default plot dimensions are deduced from the first datagroup specified.

Many more examples are available in the overlay examples page.

11.6. Available Colours and Markers

CIS recognises any valid html colour [http://www.w3schools.com/html/html_colornames.asp], specified using its name e.g. red for options such as item colour (line/scatter colour) and the colour of the coast lines.

A list of available colour maps for 3D plots, such as heatmaps, scatter and contour plots, can be found here: colour maps [http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps].

For a list of available scatter point styles, see here: scatter point styles [http://matplotlib.org/api/markers_api.html#module-matplotlib.markers].

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

12. Gallery

A collection of example CIS plots along with the commands used to generate them.

[image: _images/model.png]
Model output data

[image: _images/line.png]
Aggregated model data

% cis plot precip:xenida_zonal.nc –itemwidth=2 –xaxis latitude –xlabel “Latitude (degrees)” –yaxis precip –ylabel “Precipitation ($kg/m^2/s$)” –title “Zonal mean of total precipitation rate” -o line.png

[image: _images/MODIS_L2.png]
MODIS Level 2

[image: _images/MODIS_L3.png]
MODIS Level 3

[image: _images/seviri-ctt.png]
Seviri Cloud top temperature

[image: _images/agoufou_18022013_all_three.gif]
Aeronet time series

[image: _images/comparative_scatter_Aeronet.png]
Aeronet comparative scatter

% cis plot 440-870Angstrom:../cis_repo_test_files/920801_091128_Agoufou_small.lev20 AOT_440:../cis_repo_test_files/920801_091128_Agoufou_small.lev20 –xlabel “440-870nm Angstrom Exponent” –ylabel “AOT at 440nm” –title “” –type comparativescatter -o comparative_scatter_Aeronet.png

[image: _images/comparativehistogram3d.png]
Aeronet comparatice histogram

% cis plot 440-870Angstrom:920801_091128_Agoufou_small.lev20 AOT_440:../cis_repo_test_files/920801_091128_Agoufou_small.lev20 –xlabel “440-870nm Angstrom Exponent” –ylabel “AOT at 440nm” –title “” –type histogram3d -o comparativehistogram3d

[image: _images/aerosol_cci.png]
Aerosol CCI

[image: _images/Cloud_CCI.png]
Cloud CCI

%cis plot cwp:20080620072500-ESACCI-L2_CLOUD-CLD_PRODUCTS-MODIS-AQUA-fv1.0.nc
-o Cloud_CCI –xmin 75 –xmax 110 –xstep 5

[image: _images/cloudsat_RVOD.png]
CloudSat Liquid water content

[image: _images/caliop_l1b.png]
CALIOP Level 1b

[image: _images/aircraft.png]
NCAR-RAF ambient temperature

% cis plot ATX:RF04.20090114.192600_035100.PNI.nc –xaxis latitude –xlabel
“Latitude (degrees north)” –yaxis altitude –ylabel “Altitude (m)” –cbarlabel “^{circ}C” -o aircraft.png

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

13. Evaluation

The Community Intercomparison Suite allows you to perform general arithmetic operations between different variables
using the ‘eval’ command. For example, you might want to calculate the (relative) difference between two variables.

Note

All variables used in a evaluation must be of the same shape in order to be compatible, i.e. the same number of
points in each dimension, and of the same type (Ungridded or Gridded). This means that, for example, operations
between different data products are unlikely to work correctly - performing a collocation or aggregation onto a
common grid would be a good pre-processing step.

Warning

This CIS command performs a Python eval() [https://docs.python.org/2/library/functions.html#eval] on
user input. This has the potential to be a security risk and before deploying CIS to any environment where
your user input is untrusted (e.g. if you want to run CIS as a web service) you must satisfy yourself
that any security risks have been mitigated. CIS implements the following security restrictions on the
expression which is evaluated:

	The eval() operates in a restricted namespace that only has access to a select handful of builtins
(see expr below) - so __import__, for example, is unavailable.

	The only module available in the namespace is numpy [http://www.numpy.org/].

	Any expression containing two consecutive underscores (__) is assumed to be harmful and will not
be evaluated.

The evaluate syntax looks like this:

$ cis eval <datagroup>... <expr> <units> [-o [<output_var>:]<outputfile>] [--attributes <attributes>]

where square brackets denote optional commands and:

	<datagroup>

	is a modified CIS datagroup of the format
<variable>[=<alias>]...:<filename>[:product=<productname>]. One or more
datagroups should be given.

	<variable> is a mandatory variable or list of variables to use.

	<alias> is an optional alternative variable name to use in place of the name given in the file. As you will see
in the expression section, the variable names given will need to be valid python variable names,
which means:

1. They may use only the characters [A-Z], [a-z] and numbers [0-9] provided they do not start with a number

2. The only special character which may be used is the underscore (_) - but don’t use two consecutively
(see security note)

3. Don’t use any of the reserved python keywords [https://docs.python.org/2/reference/lexical_analysis.html#keywords] such as class or and as variable
names (they’re OK if they’re only part of a name though).

4. Avoid using names of python builtins [https://docs.python.org/2/library/functions.html#built-in-funcs]
like max or abs (again, it’s OK if they’re only part of a name).

So if the variable name in your file violates these rules (e.g. ‘550-870Angstrom’) use an alias:

550-870Angstrom=a550to870

	<filename> is a mandatory file or list of files to read from.

	<productname> is an optional CIS data product to use (see Data Products):

See Datagroups for a more detailed explanation of datagroups.

	<expr>

	is the arithmetic expression to evaluate; for example: variable1+variable2. Use the following basic
rules to get started:

1. Use the variable names (or aliases) as given in the datagroups (they’re case-sensitive) - don’t enclose
them in quotes.

2. If your expression contains whitespace, you’ll need to enclose the whole expression in single or double
quotes.

3. Construct your expression using plus +, minus -, times *, divide / , power **
(note that you can’t use ^ for exponents, like you typically can in spreadsheets and some other computer
languages). Parentheses () can be used to group elements so that your expression is evaluated in the order
you intend.

If you need more functionality, you’re encountering errors or not getting the answer you expect then you should
consider the following.

1. This expression will be evaluated in Python using the eval() method [https://docs.python.org/2/library/functions.html#eval] (see security note), so the expression must be a valid Python
expression.

2. The only Python methods available to you are a trimmed down list of the python builtins [https://docs.python.org/2/library/functions.html#built-in-funcs]: ‘abs’, ‘all’, ‘any’, ‘bool’, ‘cmp’, ‘divmod’,
‘enumerate’, ‘filter’, ‘int’, ‘len’, ‘map’, ‘max’, ‘min’, ‘pow’, ‘range’, ‘reduce’, ‘reversed’, ‘round’,
‘sorted’, ‘sum’, ‘xrange’, ‘zip’.

3. The numpy module [http://www.numpy.org/] is available, so you can use any of its methods e.g.
numpy.mean(variable1).

4. For security reasons, double underscores (__) must not appear anywhere in the expression.

5. The expression must produce an output array of the same shape as the input variables.

6. The expression is evaluated at the array level, not at the element level - so the variables in an
expression represent numpy arrays, not individual numeric values. This means that numpy.mean([var1,var2])
will give you a combined average over the whole of both arrays (i.e. a single number, not an array), which
would be invalid (consider the previous rule). However, you could add the mean (over the whole array) of one
variable to every point on a second variable by doing var1 + numpy.mean(var2).

Note

CIS eval command will flatten ungridded data so that structure present in the input files will be ignored. This
allows you to compare ungridded data with different shapes, e.g. (3,5) and (15,)

	<units>

	is a mandatory argument describing the units of the resulting expression. This should be a
CF compliant [http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/build/ch03.html#table-supported-units]
units string, e.g. "kg m^-3". Where this contains spaces, the whole string should be enclosed in quotes.

	<outputfile>

	is an optional argument specifying the file to output to. This will be automatically given a .nc extension if not
present. This must
not be the same file path as any of the input files. If not provided, the default output filename is out.nc

	<output_var> is an optional prefix to the output file argument to specify the name of the output variable within
the output file, e.g. -o my_new_var:output_filename.nc. If not provided, the default output variable name is
calculated_variable

	<attributes>

	is an optional argument allowing users to provide additional metadata to be included in the evaluation output variable.
This should be indicated by the attributes flag (--attributes or -a). The attributes should then follow in
comma-separated, key=value pairs, for example --attributes standard_name=convective_rainfall_amount,echam_version=6.1.00.
Whitespace is permitted in both the names and the values, but then must be enclosed in quotes: -a "operating system = "AIX 6.1 Power6".
Colons or equals signs may not be used in attribute names or values.

13.1. Evaluation Examples

13.1.1. Comparison of annual Aerosol Optical Thickness from models

In this example we compare annual Aerosol Optical Thickness from ECHAM and HadGEM model data. The data used in this
example can be found at /group_workspaces/jasmin/cis/data.

First we produce annual averages of our data by aggregating:

$ cis aggregate od550aer:ECHAM_fixed/2007_2D_3hr/od550aer.nc t -o echam-od550aer
$ cis aggregate od550aer:HadGEM_fixed/test_fix/od550aer.nc t -o hadgem-od550aer

$ cis plot od550aer:echam-od550aer.nc --xmin -180 --xmax 180 --cbarorient=horizontal --title="ECHAM AOT550" --vmin=0 --vmax=0.5
$ cis plot od550aer:hadgem-od550aer.nc --xmin -180 --xmax 180 --cbarorient=horizontal --title="HadGEM AOT550" --vmin=0 --vmax=0.5

[image: _images/echam_aggregated.png]
[image: _images/hadgem_aggregated.png]
We then linearly interpolate the HadGEM data onto the ECHAM grid:

$ cis col od550aer:hadgem-od550aer.nc echam-od550aer.nc:collocator=lin -o hadgem-od550aer-collocated

$ cis plot od550aer:hadgem-od550aer-collocated.nc --xmin -180 --xmax 180 --cbarorient=horizontal --title="HadGEM AOT550" --vmin=0 --vmax=0.5

[image: _images/hadgem_collocated.png]
Next we subtract the two fields using:

$ cis eval od550aer=a:echam-od550aer.nc od550aer=b:hadgem-od550aer-collocated.nc "a-b" 1 -o modeldifference

Finally we plot the evaluated output:

$ cis plot calculated_variable:modeldifference.nc --xmin -180 --xmax 180 --cbarorient=horizontal --title="ECHAM-HadGEM difference AOT550" --vmin=-0.25 --vmax=0.2

[image: _images/echam_hadgem_difference.png]

13.1.2. Calculation of Angstrom exponent for AERONET data

AERONET data allows us to calculate Angstrom Exponent (AE) and then compare it against the AE already in the file.
They should strongly correlate although it is not expected they will be identical due to averaging etc during
production of AERONET datafiles.

The file agoufou.lev20 refers to /group_workspaces/jasmin/cis/data/aeronet/AOT/LEV20/ALL_POINTS/920801_121229_Agoufou.lev20

The AE is calculated using an eval statement:

$ cis eval AOT_440,AOT_870:agoufou.lev20 "(-1)* (numpy.log(AOT_870/AOT_440)/numpy.log(870./440.))" 1 -o alfa

Plotting it shows the expected correlation:

$ cis plot 440-870Angstrom:agoufou.lev20 calculated_variable:alfa.nc --type comparativescatter --itemwidth=10 --xlabel="AERONET 440-870Angstrom" --ylabel="AERONET (-1)*(numpy.log(AOT_870/AOT_440)/numpy.log(870./440.))"

[image: _images/angstrom_exponent.png]
This correlation can be confirmed by using the CIS stats command:

$ cis stats 440-870Angstrom:agoufou.lev20 calculated_variable:alfa.nc

==================================
RESULTS OF STATISTICAL COMPARISON:
==================================
Number of points: 63126
Mean value of dataset 1: 0.290989032142
Mean value of dataset 2: 0.295878214327
Standard deviation for dataset 1: 0.233995525021
Standard deviation for dataset 2: 0.235381075635
Mean of absolute difference: 0.00488918218519
Standard deviation of absolute difference: 0.00546343157047
Mean of relative difference: 0.0284040419499
Standard deviation of relative difference: 3.95137224542
Spearman's rank coefficient: 0.999750939223
Linear regression gradient: 1.00566622549
Linear regression intercept: 0.003240372714
Linear regression r-value: 0.999746457079
Linear regression standard error: 0.00530006646489

13.1.3. Using Evaluation for Conditional Aggregation

The eval command can be combined with other CIS commands to allow you to perform more complex tasks than would
otherwise be possible.

For example, you might want to aggregate a satellite measurement of one variable only when the corresponding cloud cover
fraction (stored in separate variable) is less than a certain value. The aggregate command doesn’t allow this kind
of conditional aggregation on its own, but you can use an evaluation to achieve this in two stages.

In this example we use the MODIS file MOD04_L2.A2010001.2255.005.2010005215814.hdf in directory
/group_workspaces/jasmin/cis/data/MODIS/MOD04_L2/. The optical depth and cloud cover variables can be seen in the
following two plots:

$ cis plot Optical_Depth_Land_And_Ocean:MOD04_L2.A2010001.2255.005.2010005215814.hdf --xmin 132 --xmax 162 --ymin -70 --title "Aerosol optical depth" --cbarscale 0.5 --itemwidth 10 -o cloud_fraction.png
$ cis plot Cloud_Fraction_Ocean:MOD04_L2.A2010001.2255.005.2010005215814.hdf --xmin 132 --xmax 162 --ymin -70 --title "Cloud cover fraction" --cbarscale 0.5 --itemwidth 10 -o cloud_fraction.png

[image: _images/modis_optical_depth.png]
[image: _images/modis_cloud_fraction.png]
First we perform an evaluation using the numpy.masked_where [http://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.masked_where.html#numpy.ma.masked_where]
method to produce an optical depth variable that is masked at all points where the cloud cover is more than 20%:

$ cis eval Cloud_Fraction_Ocean=cloud,Optical_Depth_Land_And_Ocean=od:MOD04_L2.A2010001.2255.005.2010005215814.hdf "numpy.ma.masked_where(cloud > 0.2, od)" 1 -o od:masked_optical_depth.nc
$ cis plot od:masked_optical_depth.nc --xmin 132 --xmax 162 --ymin -70 --title Aerosol optical depth --cbarscale 0.5 --itemwidth 10 -o masked_optical_depth.png'

[image: _images/modis_masked_optical_depth.png]
Then we perform an aggregation on this masked output file to give the end result - aerosol optical depth aggregated only
using points where the cloud cover is less than 20%:

$ cis aggregate od:masked_optical_depth.nc x=[132,162,0.5],y=[-70,-57,0.5] -o aggregated_masked_optical_depth
$ cis plot od:aggregated_masked_optical_depth.nc --xmin 132 --xmax 162 --ymin -70 --title "Aerosol optical depth (cloud fraction > 0.2)" --cbarscale 0.5 -o aggregated_aod.png

[image: _images/modis_aggregated_aod.png]

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

14. Statistics

The Community Intercomparison Suite allows you to perform statistical analysis on two variables using the ‘stats’
command. For example, you might wish to examine the correlation between a model data variable and actual measurements.
The ‘stats’ command will calculate:

	Number of data points used in the analysis.

	The mean and standard deviation of each dataset (separately).

	The mean and standard deviation of the absolute difference (var2 - var1).

	The mean and standard deviation of the relative difference ((var2 - var1) / var1).

	The Linear Pearson [http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.stats.pearsonr.html] correlation coefficient.

	The Spearman Rank [http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.stats.spearmanr.html] correlation coefficient.

	The coefficients of linear regression (i.e. var2 = a var1 + b), r-value, and standard error of the estimate.

These values will be displayed on screen and can optionally be save as NetCDF output.

Note

Both variables used in a statistical analysis must be of the same shape in order to be compatible, i.e. the
same number of points in each dimension, and of the same type (ungridded or gridded). This means that, for example,
operations between different data products are unlikely to work correctly - performing a collocation or aggregation
onto a common grid would be a good pre-processing step.

Note

Only points which have non-missing values for both variables will be included in the analysis. The number of points
this includes is part of the output of the stats command.

Warning

Unlike aggregation, stats does not currently use latitude weighting to account for the
relative areas of different grid cells.

The statistics syntax looks like this:

$ cis stats <datagroup>... [-o <outputfile>]

where:

	<datagroup>

	is a CIS datagroup specifying the variables and files to read and is of the format
<variable>...:<filename>[:product=<productname>] where:

	<variable> is a mandatory variable or list of variables to use.

	<filenames> is a mandatory file or list of files to read from.

	<productname> is an optional CIS data product to use (see Data Products):

One or more datagroups should be given, but the total number of variables declared in all datagroups must be exactly
two. See Datagroups for a more detailed explanation of datagroups.

	<outputfile>

	is an optional argument specifying a file to output to. This will be automatically given a .nc extension if not
present. This must not be the same file path as any of the input files. If not provided, then the output will not be
saved to a file and will only be displayed on screen.

14.1. Statistics Example

In this example, we perform a statistical comparison of Aeronet aerosol optical thickness at two wavelengths.
The data we are using is shown in the following CIS plot commands
and can be found at /group_workspaces/jasmin/cis/data:

$ cis plot AOT_500:aeronet/AOT/LEV20/ALL_POINTS/920801_121229_Yonsei_University.lev20 --title "Aerosol optical thickness 550nm"
$ cis plot AOT_440:aeronet/AOT/LEV20/ALL_POINTS/920801_121229_Yonsei_University.lev20 --title "Aerosol optical thickness 440nm"

[image: _images/stats-aero500.png]
[image: _images/stats-aero440.png]
We then perform a statistical comparison of these variables using:

$ cis stats AOT_500,AOT_440:aeronet/AOT/LEV20/ALL_POINTS/920801_121229_Yonsei_University.lev20

Which gives the following output:

===
RESULTS OF STATISTICAL COMPARISON:

Compared all points which have non-missing values in both variables
===
Number of points: 10727
Mean value of dataset 1: 0.427751965508
Mean value of dataset 2: 0.501316673814
Standard deviation for dataset 1: 0.307680514916
Standard deviation for dataset 2: 0.346274598431
Mean of absolute difference: 0.0735647083061
Standard deviation of absolute difference: 0.0455684788406
Mean of relative difference: 0.188097066086
Standard deviation of relative difference: 0.0528621773819
Spearman's rank coefficient: 0.998289763952
Linear regression gradient: 1.12233533743
Linear regression intercept: 0.0212355272705
Linear regression r-value: 0.997245296339
Linear regression standard error: 0.0256834603945

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

15. Overlay Plot Examples

First subset some gridded data that will be used for the examples:

cis subset od550aer:aerocom.HadGEM3-A-GLOMAP.A2.CTRL.monthly.od550aer.2006.nc t=[2006-10-13] -o HadGEM_od550aer-subset

cis subset rsutcs:aerocom.HadGEM3-A-GLOMAP.A2.CTRL.monthly.rsutcs.2006.nc t=[2006-10-13] -o HadGEM_rsutcs-subset

15.1. Contour over heatmap

cis plot od550aer:HadGEM_od550aer-subset.nc:type=heatmap rsutcs:HadGEM_rsutcs-subset.nc:type=contour,color=white,contlevels=[1,10,25,50,175] --width 20 --height 15 --cbarscale 0.5 -o overlay1.png

[image: _images/overlay1.png]
cis plot od550aer:HadGEM_od550aer-subset.nc:type=heatmap,cmap=binary rsutcs:HadGEM_rsutcs-subset.nc:type=contour,cmap=jet,contlevels=[1,10,25,50,175] --xmin -180 --xmax 180 --width 20 --height 15 --cbarscale 0.5 -o overlay2.png

[image: _images/overlay2.png]

15.2. Filled contour with transparency on NASA Blue Marble

cis plot od550aer:HadGEM_od550aer-subset.nc:cmap=Reds,type=contourf,transparency=0.5,cmin=0.15 --xmin -180 --xmax 180 --width 20 --height 15 --cbarscale 0.5 --nasabluemarble

[image: _images/overlay3.png]

15.3. Scatter plus Filled Contour

cis subset rsutcs:HadGEM_rsutcs-subset.nc x=[-180,-90],y=[0,90] -o HadGEM_rsutcs-subset2

cis plot GGALT:RF04.20090114.192600_035100.PNI.nc:type=scatter rsutcs:HadGEM_rsutcs-subset2.nc:type=contourf,contlevels=[0,10,20,30,40,50,100],transparency=0.7,contlabel=true,contfontsize=18 --width 20 --height 15 --xaxis longitude --yaxis latitude --xmin -180 --xmax -90 --ymin 0 --ymax 90 --itemwidth 20 -o overlay4.png

[image: _images/overlay4.png]
cis plot GGALT:RF04.20090114.192600_035100.PNI.nc:type=scatter rsutcs:HadGEM_rsutcs-subset2.nc:type=contourf,contlevels=[40,50,100],transparency=0.3,contlabel=true,contfontsize=18,cmap=Reds --width 20 --height 15 --xaxis longitude --yaxis latitude --xmin -180 --xmax -90 --ymin 0 --ymax 90 --itemwidth 20 --nasabluemarble -o overlay5.png

[image: _images/overlay5.png]

15.4. File Locations

The gridded data files can be found at:

/group_workspaces/jasmin/cis/AeroCom/A2/HadGEM3-A-GLOMAP.A2.CTRL/renamed

and the ungridded:

/group_workspaces/jasmin/cis/jasmin_cis_repo_test_files

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

16. How can I read my own data?

16.1. Introduction

One of the key strengths of CIS is the ability for users to create their
own plugins to read data which CIS doesn’t currently support. These
plugins can then be shared with the community to allow other users
access to that data. Although the plugins are written in Python this
tutorial assumes no experience in Python. Some programming experience is
however assumed.

Note

Any technical details that may be useful to experienced Python
programmers will be highlighted in this style - they aren’t necessary
for completing the tutorial.

Here we describe the process of creating and sharing a plugin. A CIS
plugin is simply a python (.py) file with a set of methods (or
functions) to describe how the plugin should behave.

Note

The methods for each plugin are described within a Class, this gives the
plugin a name and allows CIS to ensure that all of the necessary methods
have been implemented.

There are a few methods that the plugin must contain, and some which are
optional. A skeleton plugin would look like this:

class MyProd(AProduct):
 def get_file_signature(self):
 # Code goes here

 def create_coords(self, filenames):
 ...

 def create_data_object(self, filenames, variable):
 ...

Note that in python whitespace matters! When filling in the above
methods the code for the method should be indented from the signature by
four spaces like this:

Class MyProd(AProduct):

 def get_file_signature(self):
 # Code goes here
 foo = bar

Note also that the name of the plugin (MyProd) in this case should be
changed to describe the data which it will read. (Don’t change the
AProduct part though – this is important for telling CIS that this is a
plugin for reading data.)

Note

The plugin class subclasses AProduct which is the abstract class which
defines the methods that the plugin needs to override. It also includes
a few helper functions for error catching.

When CIS looks for data plugins it searches for all classes which sub-class
AProduct. There are also plugins available for collocation with their own abstract base classes,
so that users can store multiple plugin types in the same plugin directory.

In order to turn the above skeleton into a working plugin we need to
fill in each of the methods with the some code, which turns our data
into something CIS will understand. Often it is easiest to start from an
existing plugin that reads closely matching data. For example creating a
plugin to read some other CCI data would probably be easiest to start
from the Cloud or Aerosol CCI plugins. We have created three different
tutorials to walk you through the creation of some of the existing
plugins to try and illustrate the process. The Easy tutorial walks
through the creation of a basic plugin, the Medium tutorial builds on
that by creating a plugin which has a bit more detail, and finally the
Advanced plugin talks through some of the main considerations when
creating a large and complicated plugin.

A more general template plugin is included here [https://github.com/cedadev/cis/blob/master/doc/plugin/myprod.py]
in case no existing plugin matches your need. We have also created a
short reference describing the purpose of each method the plugins
implement here.

Note

Plugins aren’t the only way you can contribute though. CIS is an open
source project hosted on GitHub [https://github.com/cedadev/cis], so please feel free to submit
pull-requests for new features or bug-fixes – just check with the
community first so that we’re not duplicating our effort.

16.1.1. Using and testing your plugin

It is important that CIS knows where to look to find your new plugin,
and this is easily done by setting the environment variable
CIS_PLUGIN_HOME to point to the directory within which your plugin is
stored.

Once you have done this CIS will automatically use your plugin for
reading any files which match the file signature you used.

If you have any issues with this (because for example the file signature
clashes with a built-in plugin) you can tell CIS to use your plugin when
reading data by simply specifying it after the variable and filename in
most CIS commands, e.g.:

cis subset a_variable:filename.nc:product=MyProd ...

16.1.2. Sharing your plugin

This is the easy bit! Once you’re happy that your plugin can fairly
reliably read a currently unsupported dataset you should share it with
the community. Use the upload form here [http://cistools.net/add-plugin] to submit your plugin to the
community.

We moderate the plugins we receive to ensure the plugins received are
appropriate and meet a minimum level of quality. We’re not expecting the
plugins to necessarily be production quality code but we do expect them
to work for the subset of data they claim to. Having said that, if we
feel a plugin provides really a valuable capability and is of high
quality we may incorporate that plugin into the core CIS data readers –
with credit to the author of course!

16.2. Tutorials

	16.2.1. Easy

	16.2.2. Medium

	16.2.3. Advanced

16.3. Data plugin reference

This section provides a reference describing the expected behaviour of
each of the functions a plugin can implement. The following methods are mandatory:

	
AProduct.get_file_signature()

	This method should return a list of regular expressions, which CIS uses to decide which data
product to use for a given file. If more than one regular expression is provided in the list then the file can
match any of the expressions. The first product with a signature that matches the filename will be used.
The order in which the products are searched is determined by the priority property, highest value first;
internal products generally have a priority of 10.

For example, this would match all files with a name containing the string ‘CODE’ and with the ‘nc’ extension.:

return [r'.*CODE*.nc']

Note

If the signature has matched the framework will call AProduct.get_file_type_error(), this gives the
product a chance to open the file and check the contents.

	Returns:	A list of regex to match the product’s file naming convention.

	Return type:	list

	
AProduct.create_coords(filenames)

	Reads the coordinates from one or more files. Note that this method may have to make certain assumptions about
the file in order to return a single coordinate set. The user should be warned through the logger if this is the
case.

	Parameters:	filenames (list) – List of filenames to read coordinates from

	Returns:	CommonData object

	
AProduct.create_data_object(filenames, variable)

	Create and return an CommonData object for a given variable from one or more files.

	Parameters:	
	filenames (list) – List of filenames of files to read

	variable (str) – Variable to read from the files

	Returns:	An CommonData object representing the specified variable

	Raises:	
	FileIOError – Unable to read a file

	InvalidVariableError – Variable not present in file

While these may be implemented optionally:

	
AProduct.get_variable_names(filenames, data_type=None)

	Get a list of available variable names from the filenames list passed in. This general implementation can be
overridden in specific products to include/exclude variables which may or may not be relevant.
The data_type parameter can be used to specify extra information.

	Parameters:	
	filenames (list) – List of string filenames of files to be read from

	data_type (str) – ‘SD’ or ‘VD’ to specify only return SD or VD variables from HDF files. This may take on
other values in specific product implementations.

	Returns:	A set of variable names as strings

	Return type:	str

	
AProduct.get_file_type_error(filename)

	Check a single file to see if it is of the correct type, and if not return
a list of errors. If the return is None then there are no errors and
this is the correct data product to use for this file.

This method gives a mechanism for a data product to identify itself as the
correct product when a specific enough file signature cannot be provided. For
example GASSP is a type of NetCDF file and so filenames end with .nc but
so do other NetCDF files, so the data product opens the file and looks
for the GASSP version attribute, and if it doesn’t find it returns an
error.

	Parameters:	filename (str) – The filename for the file

	Returns:	List of errors, or None

	Return type:	list or None

	
AProduct.get_file_format(filename)

	Returns a file format hierarchy separated by slashes, of the form
TopLevelFormat/SubFormat/SubFormat/Version.
E.g. NetCDF/GASSP/1.0, ASCII/ASCIIHyperpoint or HDF4/CloudSat. This is mainly used within the
ceda_di indexing tool. If not set it will default to the products name.

A filename of an example file can be provided to enable the determination of, for example, a dataset version
number.

	Parameters:	filename (str) – Filename of file to be inspected

	Returns:	File format, of the form [parent/]format/specific instance/version, or the class name

	Return type:	str

	Raises:	FileFormatError if there is an error

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

 	16. How can I read my own data?

16.2.1. Easy

A simple plugin to start with is the plugin for reading native ungridded
CIS data.

One of the first things to consider is which type of file our plugin is
going to be aimed at reading. It is advisable to not make the definition
too broad, it’s easy to have multiple plugins so don’t try and over
complicate the plugin by having it read many different types of file.
Roughly, one plugin should describe a set of data with the same
metadata.

Since the CIS plugin is designed to read any data which CIS produces,
the signature matches any file which ends with .nc (we also check the
source attribute but that is beyond the scope of this tutorial):

def get_file_signature(self):
 return [r'\.nc']

This uses a wildcard string to tell CIS which files do and don’t match
for our product.

Note

For an introduction to regular expressions see, for example,
https://docs.python.org/2/howto/regex.html

The next step is to complete the AProduct.create_coords() method. CIS uses this
method to create a set of coordinates from the data, so it needs to
return any appropriate coordinates in the shape that CIS expects it.

There are a number of low-level data reading routines within CIS that
can help you read in your data. For the CIS plugin (which is reading
netCDF data) we use two methods from the cis.data_io.netcdf
module: read_many_files_individually and
get_metadata. We also
import the Coord data type, which is where we store the coordinates that
we’ve read, and UngriddedCoordinates - which is what we return to CIS.

Note

In python it’s very easy to import classes and methods from other
modules within your package, and across packages using the from and
import commands. The file-reading routines used here are used by many of
the other data products. See the API section for further
details about using CIS as a python library.

Don’t worry too much about what these methods do at this stage, just use
the import lines below and you should be fine.

def create_coords(self, filenames, usr_variable=None):
 from cis.data_io.netcdf import read_many_files_individually, get_metadata
 from cis.data_io.Coord import Coord, CoordList
 from cis.data_io.ungridded_data import UngriddedCoordinates

Next, we create a list of netCDF variable names which we know are stored
in our file and send that to the file reading routine:

var_data = read_many_files_individually(filenames, ["longitude","latitude", "time"])

Then we create a CoordList to store our coordinates in, a Coord for each
of those coordinate variables, and then just give them a short label for
plotting purposes (x,y,z etc) – it is strongly advisable that you use
the standard definitions used below for your axis definitions (and use z
for altitude and p for pressure).

coords = CoordList()
coords.append(Coord(var_data[“longitude”,get_metadata(var_data[“longitude”][0]),axis=”x”))
coords.append(Coord(var_data[“latitude”,get_metadata(var_data[“latitude”][0]),axis=”y”))
coords.append(Coord(var_data[“time”,get_metadata(var_data[“time”][0]),axis=”t”))

That’s it, now we can return those coordinates in a way that CIS will
understand:

return UngriddedCoordinates(coords)

The last method we have to write is the AProduct.create_data_object() method,
which is used by CIS to pull together the coordinates and a particular
data variable into an UngriddedData object. It’s even simpler than the
previous method. We can use the same read_many_files_individually
method as we did before, and this time pass it the variable the user has
asked for:

def create_data_object(self, filenames, variable):
 from cis.data_io.ungridded_data import UngriddedData
 usr_var_data = read_many_files_individually(filenames,variable)[variable]

Then we create the coordinates using the create_coords() method we’ve
just written:

coords = self.create_coords(filename)

And finally we return the ungridded data, this combines the coordinates
from the file and the variable requested by the user:

return UngriddedData(usr_var_data, get_metadata(usr_var_data[0]),coords)

Bringing it all together, tidying it up a bit and including some error
catching gives us:

import logging
from cis.data_io.products.AProduct import AProduct
from cis.data_io.netcdf import read_many_files_individually, get_metadata

class cis(AProduct):

 def get_file_signature(self):
 return [r'cis\-.*\.nc']

 def create_coords(self, filenames, usr_variable=None):
 from cis.data_io.Coord import Coord, CoordList
 from cis.data_io.ungridded_data import UngriddedCoordinates
 from cis.exceptions import InvalidVariableError

 variables = [("longitude", "x"), ("latitude", "y"), ("altitude", "z"), ("time", "t"), ("air_pressure", "p")]

 logging.info("Listing coordinates: " + str(variables))

 coords = CoordList()
 for variable in variables:
 try:
 var_data = read_many_files_individually(filenames,variable[0])[variable[0]]
 coords.append(Coord(var_data, get_metadata(var_data[0]),axis=variable[1]))
 except InvalidVariableError:
 pass

 return UngriddedCoordinates(coords)

 def create_data_object(self, filenames, variable):
 from cis.data_io.ungridded_data import UngriddedData
 usr_var_data = read_many_files_individually(filenames,variable)[variable]
 coords = self.create_coords(filename)
 return UngriddedData(usr_var_data, get_metadata(usr_var_data[0]), coords)

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

 	16. How can I read my own data?

16.2.2. Medium

For this example we will look at the AERONET data reading plugin.
AERONET is a ground based sun-photometer network that produces
time-series data for each groundstation in a csv based text file. There
is some information about the ground station in the header of the file,
and then a table of data with a time column, and a column for each of
the measured values.

The AProduct.get_file_signature() method is straightforward, so we first consider
the AProduct.create_coords() method. Here we have actually shifted all of the work
to a private method called _create_coord_list(), for reasons which we
will explain shortly:

def create_coords(self, filenames, variable=None):
 return UngriddedCoordinates(self._create_coord_list(filenames))

Note

In python there is not really such a thing as a ‘private’ method as
there is in Java and C#, but we can signify that a method shouldn’t be
accessed externally by starting its name with one or two underscores.

In this method we import an AERONET data reading routine:

def _create_coord_list(self, filenames, data=None):
 from cis.data_io.ungridded_data import Metadata
 from cis.data_io.aeronet import load_multiple_aeronet

This data reading routine actually performs much of the hard work in
reading the AERONET file:

if data is None:
 data = load_multiple_aeronet(filenames)

Note that we only read the files if Data is None, that is if we haven’t
been passed any data already.

Note

The load_multiple_aeronet routine uses the numpy genfromtext method to
read in the csv file. This is a very useful method for reading text
based files as it allows you to define the data formats of each of the
columns, tell it which lines to ignore as comments and, optionally, mask
out any missing values. This method would provide a useful example for
reading different kinds of text based file.

We just have to describe (add metadata to) each of the components in
this method:

coords = CoordList()
coords.append(Coord(data['longitude'], Metadata(name="Longitude",shape=(len(data),),units="degrees_east", range=(-180, 180))))
coords.append(Coord(data['latitude'], Metadata(name="Latitude",shape=(len(data),),units="degrees_north", range=(-90, 90))))
coords.append(Coord(data['altitude'], Metadata(name="Altitude",shape=(len(data),), units="meters")))
time_coord = Coord(data["datetime"], Metadata(name="DateTime",standard_name='time', shape=(len(data),),units="DateTime Object"), "X")

Note that we’ve explicitly added things like units and a shape. These
are sometimes already populated for us when reading e.g. NetCDF files,
but in the case of AERONET data we have to fill it out ‘by hand’.

Internally CIS uses a ‘standard’ time defined as fractional days since
the 1st January 1600, on a Gregorian calendar. This allows us
to straightforwardly compare model and measurement times regardless of
their reference point. There are many helper methods for converting
different date-time formats to this standard time, here we use
Coord.convert_datetime_to_standard_time(), and then include the coordinate
in the coordinate list:

time_coord.convert_datetime_to_standard_time()
coords.append(time_coord)

Finally we return the coordinates:

return coords

For the create_data_object() method we have the familiar signature and
import statements:

def create_data_object(self, filenames, variable):
 from cis.data_io.aeronet import load_multiple_aeronet
 from cis.exceptions import InvalidVariableError

We can pass the job of reading the data to our AERONET reading routine –
catching any errors which occur because the variable doesn’t exist.

try:
 data_obj = load_multiple_aeronet(filenames, [variable])
except ValueError:
 raise InvalidVariableError(variable + " does not exist in " + str(filenames))

Note

Notice here that we’re catching a ValueError – which Numpy throws when
it can’t find the specified variable in the data, and rethrowing the
same error as an InvalidVariableError, so that CIS knows how to deal
with it. Any plugins should use this error when a user specifies a
variable which isn’t within the specified file.

Now we have read the data, we load the coordinate list, but notice that
we also pass in the data we’ve just read. This is why we created a
separate coordinate reading routine earlier: The data containing the
coordinates has already been read in the line above, so we don’t need to
read it twice, we just need to pull out the coordinates. This saves time
opening the file multiple times, and can be a useful pattern to remember
for files which aren’t direct access (such as text files).

coords = self._create_coord_list(filenames, data_obj)

Finally we return the complete data object, including some associated
metadata and the coordinates.

return UngriddedData(data_obj[variable], Metadata(name=variable, long_name=variable, shape=(len(data_obj),), missing_value=-999.0), coords)

Here’s the plugin in full:

class Aeronet(AProduct):

 def get_file_signature(self):
 return [r'.*\.lev20']

 def _create_coord_list(self, filenames, data=None):
 from cis.data_io.ungridded_data import Metadata
 from cis.data_io.aeronet import load_multiple_aeronet

 if data is None:
 data = load_multiple_aeronet(filenames)

 coords = CoordList()
 coords.append(Coord(data['longitude'], Metadata(name="Longitude", shape=(len(data),),
 units="degrees_east", range=(-180, 180))))
 coords.append(Coord(data['latitude'], Metadata(name="Latitude", shape=(len(data),),
 units="degrees_north", range=(-90, 90))))
 coords.append(Coord(data['altitude'], Metadata(name="Altitude", shape=(len(data),), units="meters")))
 time_coord = Coord(data["datetime"], Metadata(name="DateTime", standard_name='time', shape=(len(data),),
 units="DateTime Object"), "X")
 time_coord.convert_datetime_to_standard_time()
 coords.append(time_coord)

 return coords

 def create_coords(self, filenames, variable=None):
 return UngriddedCoordinates(self._create_coord_list(filenames))

 def create_data_object(self, filenames, variable):
 from cis.data_io.aeronet import load_multiple_aeronet
 from cis.exceptions import InvalidVariableError

 try:
 data_obj = load_multiple_aeronet(filenames, [variable])
 except ValueError:
 raise InvalidVariableError(variable + " does not exist in " + str(filenames))

 coords = self._create_coord_list(filenames, data_obj)

 return UngriddedData(data_obj[variable],
 Metadata(name=variable, long_name=variable, shape=(len(data_obj),), missing_value=-999.0),
 coords)

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

 	16. How can I read my own data?

16.2.3. Advanced

This more advanced tutorial will cover some of the difficulties when
reading in data which differs significantly from the structure CIS
expects, and/or has little metadata in the associated files. We take the
MODIS L2 plugin as our example, and discuss each method in turn.

There are a number of specific MODIS L2 products which we have tested
using this plugin, each with their own file signature, and so in this
plugin we take advantage of the fact that the regular expression
returned by get_file_signature can be a list. This way we create a
simple regular expression for each MODIS L2 products that we’re
supporting - rather than trying to create one, more complicated, regular
expression which matches just these products at the exclusion of all
others:

def get_file_signature(self):
 product_names = ['MYD06_L2', 'MOD06_L2', 'MYD04_L2', 'MOD04_L2']
 regex_list = [r'.*' + product + '.*\.hdf' for product in product_names]
 return regex_list

We have implemented the optional get_variable_names method here
because MODIS files sometimes contain variables which CIS is unable to
handle due to their irregular shape. We only want to report the variable
which CIS can read so we check each variable before adding it to the
list of variables we return. We know that MODIS only contains SD
variables so we can ignore any other types.

Note

HDF files can contain both Vdatas (VD) and Scientific Datasets (SD) data
collections (among others). These are stored and accessed quite
differently, which makes dealing with these files quite fiddly - we
often have to treat each case separately. In this case we know MODIS
files only have SD datasets which makes things a bit simpler.

def get_variable_names(self, filenames, data_type=None):
 import pyhdf.SD

 # Determine the valid shape for variables
 sd = pyhdf.SD.SD(filenames[0])
 datasets = sd.datasets()
 valid_shape = datasets['Latitude'][1] # Assumes that latitude shape == longitude shape (it should)

 variables = set([])
 for filename in filenames:
 sd = pyhdf.SD.SD(filename)
 for var_name, var_info in sd.datasets().iteritems():
 if var_info[1] == valid_shape:
 variables.add(var_name)

 return variables

MODIS data often has a scale factor built in, and stored against each
variable, this method reads that scale factor for a particular variable
and checks it against our built-in list of scale factors.

def __get_data_scale(self, filename, variable):
 from cis.exceptions import InvalidVariableError
 from pyhdf import SD

 try:
 meta = SD.SD(filename).datasets()[variable][0][0]
 except KeyError:
 raise InvalidVariableError("Variable "+variable+" not found")

 for scaling in self.modis_scaling:
 if scaling in meta:
 return scaling
 return None

In order to use data which has been scaled, we re-scale it on reading.
This creates some overhead in the reading of the data, but saves
considerable time when performing other operations on it later in the
process. Routines like this can often be adapted from available Fortran
or IDL routines (assuming no python routines are available) for your
data.

def __field_interpolate(self,data,factor=5):
 '''
 Interpolates the given 2D field by the factor,
 edge pixels are defined by the ones in the centre,
 odd factors only!
 '''
 import numpy as np

 logging.debug("Performing interpolation...")

 output = np.zeros((factor*data.shape[0],factor*data.shape[1]))*np.nan
 output[int(factor/2)::factor,int(factor/2)::factor] = data
 for i in range(1,factor+1):
 output[(int(factor/2)+i):(-1*factor/2+1):factor,:] = i*((output[int(factor/2)+factor::factor,:]-output[int(factor/2):(-1*factor):factor,:])
 /float(factor))+output[int(factor/2):(-1*factor):factor,:]
 for i in range(1,factor+1):
 output[:,(int(factor/2)+i):(-1*factor/2+1):factor] = i*((output[:,int(factor/2)+factor::factor]-output[:,int(factor/2):(-1*factor):factor])
 /float(factor))+output[:,int(factor/2):(-1*factor):factor]
 return output

Next we read the coordinates from the file (using the same method of
factoring out as we used in the Aeronet case).

def _create_coord_list(self, filenames, variable=None):
 import datetime as dt

 variables = ['Latitude', 'Longitude', 'Scan_Start_Time']
 logging.info("Listing coordinates: " + str(variables))

As usual we rely on the lower level IO reading routines to provide the
raw data, in this case using the hdf.read routine.

sdata, vdata = hdf.read(filenames, variables)

Note

Notice we have to put the vdata data somewhere, even though we don’t use
it in this case.

We have to check whether we need to scale the coordinates to match the
variable being read:

apply_interpolation = False
if variable is not None:
 scale = self.__get_data_scale(filenames[0], variable)
 apply_interpolation = True if scale is "1km" else False

Then we can read the coordinates, one at a time. We know the latitude
information is stored in an SD dataset called Latitude, so we read that
and interpolate it if needed.

lat = sdata['Latitude']
sd_lat = hdf.read_data(lat, "SD")
lat_data = self.__field_interpolate(sd_lat) if apply_interpolation else sd_lat
lat_metadata = hdf.read_metadata(lat, "SD")
lat_coord = Coord(lat_data, lat_metadata,'Y')

The same for Longitude:

lon = sdata['Longitude']
lon_data = self.__field_interpolate(hdf.read_data(lon,"SD")) if apply_interpolation else hdf.read_data(lon,"SD")
lon_metadata = hdf.read_metadata(lon,"SD")
lon_coord = Coord(lon_data, lon_metadata,'X')

Next we read the time variable, remembering to convert it to our
internal standard time. (We know that the MODIS’ atomic clock time is
referenced to the 1st January 1993.)

time = sdata['Scan_Start_Time']
time_metadata = hdf.read_metadata(time,"SD")
Ensure the standard name is set
time_metadata.standard_name = 'time'
time_coord = Coord(time,time_metadata,"T")
time_coord.convert_TAI_time_to_std_time(dt.datetime(1993,1,1,0,0,0))

return CoordList([lat_coord,lon_coord,time_coord])

def create_coords(self, filenames, variable=None):
 return UngriddedCoordinates(self._create_coord_list(filenames))

For the create_data_object we are really just pulling the above
methods together to read the specific variable the user has requested
and combine it with the coordinates.

def create_data_object(self, filenames, variable):
 logging.debug("Creating data object for variable " + variable)

 # reading coordinates
 # the variable here is needed to work out whether to apply interpolation to the lat/lon data or not
 coords = self._create_coord_list(filenames, variable)

 # reading of variables
 sdata, vdata = hdf.read(filenames, variable)

 # retrieve data + its metadata
 var = sdata[variable]
 metadata = hdf.read_metadata(var, "SD")

 return UngriddedData(var, metadata, coords)

We have also implemented the AProduct.get_file_format() method which allows some
associated tools (for example the CEDA_DI [https://github.com/cedadev/ceda-di] tool) to use CIS to index
files which they wouldn’t otherwise be able to read. We just return a
file format descriptor as a string.

def get_file_format(self, filenames):
 """
 Get the file format
 :param filenames: the filenames of the file
 :return: file format
 """

 return "HDF4/ModisL2"

The full MODIS L2 plugin is rather long to show but can be downloaded
here [https://github.com/cedadev/cis/blob/master/cis/data_io/products/MODIS.py].

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

17. Analysis plugin development

Users can write their own plugins for performing the collocation of two data sets.
There are three different types of plugin available for collocation, first we will describe the overall design and how
these different components interact, then each will be described in more detail.

17.1. Basic collocation design

The diagram below demonstrates the basic design of the collocation system, and the roles of each of the components.
In the simple case of the default collocator (which returns only one value) the Collocator
loops over each of the sample points, calls the relevant Constraint to reduce the
number of data points, and then the Kernel which returns a single value, which the
collocator stores.

[image: _images/CollocationDiagram.png]

17.2. Kernel

A kernel is used to convert the constrained points into values in the output. There are two sorts of kernel one
which act on the final point location and a set of data points (these derive from Kernel) and the more specific kernels
which act upon just an array of data (these derive from AbstractDataOnlyKernel, which in turn derives from Kernel).
The data only kernels are less flexible but should execute faster. To create a new kernel inherit from Kernel and
implement the abstract method Kernel.get_value(). To make a data only kernel inherit from AbstractDataOnlyKernel
and implement AbstractDataOnlyKernel.get_value_for_data_only() and optionally overload AbstractDataOnlyKernel.get_value().
These methods are outlined below.

	
Kernel.get_value(point, data)

	This method should return a single value (if Kernel.return_size is 1) or a list of n values (if
Kernel.return_size is n) based on some calculation on the data given a single point.

The data is deliberately left unspecified in the interface as it may be any type of data, however it is expected
that each implementation will only work with a specific type of data (gridded, ungridded etc.) Note that this
method will be called for every sample point and so could become a bottleneck for calculations, it is advisable
to make it as quick as is practical. If this method is unable to provide a value (for example if no data points
were given) a ValueError should be thrown.

	Parameters:	
	point – A single HyperPoint

	data – A set of data points to reduce to a single value

	Returns:	For return_size=1 a single value (number) otherwise a list of return values, which represents some
operation on the points provided

	Raises:	ValueError – When the method is unable to return a value

	
AbstractDataOnlyKernel.get_value_for_data_only(values)

	This method should return a single value (if Kernel.return_size is 1) or a list of n values
(if Kernel.return_size is n) based on some calculation on the the values (a numpy array).

Note that this method will be called for every sample point in which data can be placed and so could become a
bottleneck for calculations, it is advisable to make it as quick as is practical. If this method is unable to
provide a value (for example if no data points were given) a ValueError should be thrown. This method will not
be called if there are no values to be used for calculations.

	Parameters:	values – A numpy array of values (can not be none or empty)

	Returns:	A single data item if return_size is 1 or a list of items containing Kernel.return_size items

	Raises:	ValueError – If there are any problems creating a value

17.3. Constraint

The constraint limits the data points for a given sample point.
The user can also add a new constraint mechanism by subclassing Constraint and providing an implementation for
Constraint.constrain_points(). If more control is needed over the iteration sequence then the
Constraint.get_iterator() method can also be
overloaded. Note however that this may not be respected by all collocators, who may still iterate over all
sample data points. It is possible to write your own collocator (or extend an existing one) to ensure the correct
iterator is used - see the next section. Both these methods, and their signatures, are outlined below.

	
Constraint.constrain_points(point, data)

	This method should return a subset of the data given a single reference point.
It is expected that the data returned should be of the same type as that given - but this isn’t mandatory. It is
possible that this function will return zero points (no data), the collocation class is responsible for
providing a fill_value.

	Parameters:	
	point (HyperPoint) – A single HyperPoint

	data – A set of data points to be reduced

	Returns:	A reduced set of data points

	
Constraint.get_iterator(missing_data_for_missing_sample, coord_map, coords, data_points, shape, points, output_data)

	Iterator to iterate through the points needed to be calculated.
The default iterator, iterates through all the sample points calling Constraint.constrain_points() for
each one.

	Parameters:	
	missing_data_for_missing_sample – If true anywhere there is missing data on the sample then final point is
missing; otherwise just use the sample

	coord_map – Coordinate map - list of tuples of indexes of hyperpoint coord, data coords and output coords

	coords – The coordinates to map the data onto

	data_points – The (non-masked) data points

	shape – Shape of the final data values

	points – The original points object, these are the points to collocate

	output_data – Output data set

	Returns:	Iterator which iterates through (sample indices, hyper point and constrained points) to be placed in
these points

To enable a constraint to use a AbstractDataOnlyKernel, the method
get_iterator_for_data_only() should be implemented (again though, this may be ignored by a collocator). An
example of this is the BinnedCubeCellOnlyConstraint.get_iterator_for_data_only() implementation.

17.4. Collocator

Another plugin which is available is the collocation method itself. A new one can be created by subclassing Collocator and
providing an implementation for Collocator.collocate(). This method takes a number of sample
points and applies the given constraint and kernel methods on the data for each of those points. It is responsible for
returning the new data object to be written to the output file. As such, the user could create a collocation routine
capable of handling multiple return values from the kernel, and hence creating multiple data objects, by creating a
new collocation method.

Note

The collocator is also responsible for dealing with any missing values in sample points. (Some sets of sample points may
include values which may or may not be masked.) Sometimes the user may wish to mask the output for such points, the
missing_data_for_missing_sample attribute is used to determine the expected behaviour.

The interface is detailed here:

	
Collocator.collocate(points, data, constraint, kernel)

	The method is responsible for setting up and running the collocation. It should take a set of data and map that
onto the given (sample) points using the constraint and kernel provided.

	Parameters:	
	points – A set of sample points onto which we will collocate some other ‘data’

	data – Some other data to be collocated onto the ‘points’

	constraint – A Constraint instance which provides a Constraint.constrain_points() method,
and optionally an Constraint.get_iterator() method

	kernel – A Kernel instance which provides a Kernel.get_value() method

	Returns:	One or more CommonData (or subclasses of) objects whose coordinates lie on the points
defined above.

17.5. Implementation

For all of these plugins any new variables, such as limits, constraint values or averaging parameters,
are automatically set as attributes in the relevant object. For example, if the user wanted to write a new
constraint method (AreaConstraint, say) which needed a variable called area, this can be accessed with self.area
within the constraint object. This will be set to whatever the user specifies at the command line for that variable, e.g.:

$./cis.py col my_sample_file rain:"model_data_?.nc"::AreaConstraint,area=6000,fill_value=0.0:nn_gridded

Example implementations of new collocation plugins are demonstrated below for each of the plugin types:

class MyCollocator(Collocator):

 def collocate(self, points, data, constraint, kernel):
 values = []
 for point in points:
 con_points = constraint.constrain_points(point, data)
 try:
 values.append(kernel.get_value(point, con_points))
 except ValueError:
 values.append(constraint.fill_value)
 new_data = LazyData(values, data.metadata)
 new_data.missing_value = constraint.fill_value
 return new_data

class MyConstraint(Constraint):

 def constrain_points(self, ref_point, data):
 con_points = []
 for point in data:
 if point.value > self.val_check:
 con_points.append(point)
 return con_points

class MyKernel(Kernel):

 def get_value(self, point, data):
 nearest_point = point.furthest_point_from()
 for data_point in data:
 if point.compdist(nearest_point, data_point):
 nearest_point = data_point
 return nearest_point.val

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

18. Maintenance and Developer Guide

18.1. Source files

The cis source code is hosted at https://github.com/cedadev/jasmin_cis.git, while the conda recipes and other files are
hosted here: https://github.com/cistools.

18.2. Test suites

The unit tests suite can be ran using Nose readily. Just go the root of the repository (i.e. cis) and type
nosetests cis/test/unit and this will run the full suite of tests.

A comprehensive set of integration tests are also provided. There is a folder full of test data
at: /group_workspaces/jasmin/cis/cis_repo_test_files which has been compressed and is available as a tar inside that
folder.

To add files to the folder simply copy them in then delete the old tar file and create a new one with:

tar --dereference -zcvf cis_repo_test_files.tar.gz .

Ignore warning about file changing - it is because the tar file is in the directory. Having the tar file in the
directory, however, means the archive can be easily unpacked, without creating an intermediate folder.
To make the integration tests run this needs to be copied to the local machine and decompressed. Then set the
environment variable CIS_DATA_HOME to the location of the data sets, and run nosetests cis/test/integration.

There are also a number of plot tests available under the test/plot_tests directory in
the test_plotting.py script. These integration tests use matplotlib to perform a byte-wise comparision of the output
against reference plots, using a pre-defined tolerance. Any tests which fail can be evaluated using the idiff.py
tool in the same directory. Running this will present a graphical interface showing the reference plot, the test output,
and the difference between them. You can either choose to accept the difference which will move the test output to the
reference directory, or reject it.

18.3. Dependencies

A graph representing the dependency tree can be found at doc/cis_dependency.dot (use XDot [http://code.google.com/p/jrfonseca/wiki/XDot] to read it)

[image: _images/dep.png]

18.4. Creating a Release

To carry out intermediate releases follow this procedure:

	Check the version number and status is updated in the CIS source code (cis/__init__.py)

	Tag the new version on Github with new version number and release notes.

	Create a tarball - use python setup.py egg_info sdist in the cis root dir.

	Install this onto the release virtual environment: this is at /group_workspaces/jasmin/cis/cis_dev_venv. So activate
the venv, upload the tarball somewhere on the GWS and then do pip install <LOCATION_OF_TARBALL>.

	Create an anaconda build on each platform (OS X, Linux and Windows) - see below.

	Request Phil Kershaw upload the tarball to PyPi. (Optional)

For a release onto JASMIN, complete the steps above and then ask Alan Iwi to produce an RPM, deploy it on a
test VM, confirm functionality then rollout across full JAP and LOTUS nodes.

18.4.1. Anaconda Build

The Anaconda build recipes for CIS and the dependencies which can’t be found either in the core channel, or in SciTools are stored in their own github repository here [https://github.com/cistools/conda-recipes].
To build a new CIS package clone the conda-recipes repository and then run the following command:

$ conda build -c cistools -c scitools cis

By default this will run the full unit-test suite before successful completion. You can also optionally run the integration test suite by specifying the CIS_DATA_HOME environment variable.

To upload the package to the cistools channel on Anaconda.org use:

$ binstar upload <package_location> -u cistools

Alternatively, when creating release candidates you may wish to upload the package to the ‘beta’ channel. This gives an
opportunity to test the packaging and installation process on a number of machines. To do so, use:

$ binstar upload <package_location> -u cistools --channel beta

To install cis from the beta channel use:

$ conda install -c https://conda.binstar.org/cistools/channel/beta -c cistools -c scitools cis

18.5. Documentation

The documentation and API reference are both generated using a mixture of markdown and autogenerated documentation using
the Sphinx autodoc package [http://sphinx-doc.org/ext/autodoc.html]. Build the documentation using:

python setup.py build_sphinx

This will output the documentation in html under the directory doc/_build/html.

18.6. Continuous Integration Server

JASMIN provide a Jenkins CI Server on which the CIS unit and integration tests are run whenever origin/master is updated.
The integration tests take approximately 7 hours to run whilst the unit tests take about 5s. The Jenkins server is
hosted on jasmin-sci1-dev at /var/lib/jenkins and is accessed at http://jasmin-sci1-dev.ceda.ac.uk:8080/

We also have a Travis cloud instance (https://travis-ci.org/cedadev/cis) which in principle allows us to build and test
on both Linux and OS X. There are unit test builds currently working but because of a hard time limit on builds (120
minutes) the integration tests don’t currently run.

18.6.1. Copying files to the CI server

The contents of the test folder will not be automatically copied across to the Jenkins directory, so if you add any
files to the folder you’ll need to manually copy them to the Jenkins directory or the integration tests will fail. The
directory is /var/lib/jenkins/workspace/CIS Integration Tests/cis/test/test_files/. This is not entirely simple
because:

	We don’t have write permissions on the test folder

	Jenkins doesn’t have read permissions for the CIS group_workspace

In order to copy files across we have done the following:

	Copy the files we want to /tmp

	Open up the CIS Integration Tests webpage and click ‘Configure’

	Scroll down to ‘Build’ where the shell script to be executed is found and insert a line to copy the file to the
directory, e.g. cp /tmp/file.nc /var/lib/jenkins/workspace/CIS Integration Tests/cis/test/test_files

	Run the CIS Integration Tests

	Remove the line from the build script

	Remove the files from /tmp

18.6.2. Problems with Jenkins

Sometimes the Jenkins server experiences problems which make it unusable. One particular issue we’ve encountered more
than once is that Jenkins occasionally loses all its stylesheets and then becomes impossible to use. Asking CEDA support
(or Phil Kershaw) to restart Jenkins should solve this.

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Community Intercomparison Suite 1.5.2 (Stable) documentation

Index

 G
 | R

G

 	

 	get_variables() (in module cis)

R

 	

 	read_data() (in module cis)

 	

 	read_data_list() (in module cis)

 Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment-bright.png

_images/NCAR-RAF-3.png
Latitude

60

30

ADC Total Air Temperature

= ~=

Z

o

189 198 207 216 225 234
Longitude

24

16

-16

-24

=32

-40

(deg_C)

_static/minus.png

_static/file.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		Community Intercomparison Suite 1.5.2 (Stable) documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, University of Oxford.
 Created using Sphinx 1.3.5.

_images/hadgem_aggregated.png
Latitude

HadGEM AOT550

=30

_images/NCAR-RAF-5.png
air_pressure (hPa)

ADC Total Air Temperature

2000

4000

6000 8000
altitude (m)

10000 12000 14000

24

16

-16

-24

=32

(deg_C)

_images/aircraft.png
GGALTC (m)

Ambient Temperature, Reference

12000

10000

8000

6000

4000

2000

25 30 35 40 45 50 55 60
LATC (degree_N)

-70 -60 -50 -40 -30 -20 -10 [10 20
(den 1)

_images/modis_masked_optical_depth.png
Latitude

Aerosol optical depth

132

135 138 141 144 147 150
Longitude

153

156 159 162

_images/MODIS-10.png
Latitude

=30

-60

0
Longitude

Cloud Top Temperature: Mean of Daily Mean

60

180

280

270

™
-3
S

250

(Degrees Kelvin)

N
x
S

230

220

_images/MODIS-6.png
Latitude

60

30

Cloud Top Temperature: Mean of Daily Mean

=120

-60

0
Longitude

60

120

290

280

270

260

250

240

230

220

(Degrees Kelvin)

_images/stats-aero500.png
28 Aerosol optical thickness 500nm

2.4

I
o

AOT_500

DateTime

_images/seviri-ctt.png
Latitude

SEVIRI APOLLO CTT \n 12:00 UTC 13/11/2013

=

=20

Longitude

320
315
310
305
300
295
290
285
280
275
270
265
260
255
250 g
245
240 E
235
230
225
220
215
210
205
200
195
190
185
180
175
170

_images/stats-aero440.png
AOT_440
Hooe N NN
N & o A

o
®

Aerosol optical thickness 440nm

DateTime

_images/overlay5.png
Latitude

Reference GPS Altitude (MSL)

-180 -170 -160 -150 -140 -130 -120 -110 -100 —90
Longitude

led

135

120

1.05

0.90

10.75

0.60

0.45

0.30

0.15

0.00

(m)

_images/PressureCollocated.png
air_pressure (Pa)

100000
-90

Air temperature

=30 0 30
latitude (degrees)

300

285

270

255

240

225

210

195

(K)

_images/MODIS-9.png
Latitude

=30

-60

Cloud Top Temperature: Mean of Daily Mean

0 60
Longitude

180

296

288

280

272

264

256

248

240

(Degrees Kelvin)

_images/CollocationDiagram.png
/

For each sample point:

Default Co-locator

Data points

Single value

=N

_images/overlay4.png
Latitude

Reference GPS Altitude (MSL)

0
-180 -170 ~160 ~150 ~140 -130 -120 -110 ~100 90
Longitude

0.75
E

0.60

0.45

0.30

0.15

0.00

_images/PressureCollocation.png
air_pressure (hPA)

—
w
w

—
w
»

—
w
i

time (days since 1600-01-01 00:00:00)

-53.75

-54.00

-54.25

-54.50

-54.75

-55.00

-55.25

-55.50

-55.75

(degrees C)

_images/2009-subset.png
e —66.0
13.1
oo -66.5
13.2
z -67.0
£133} ° o
© % 6755
7134 ¢
g -68.0 9
5 3
e =
£'135 N -68.5
13.6 -69.0
13.7f ° -69.5

time (days since 1600-01-01 00:00:00)

_images/2010-subset.png
air_pressure (hPA)

13.30

13.35

13.40

o
S
~

time (days since 1600-01-01 00:00:00)

o
S
~

-53.7

-54.0

=543

-54.6

-54.9

=55.2

-55.5

(degrees C)

_images/MOD08n_3.png
Cloud Top Temperature: Mean of Daily Mean

27

Latitude

24

21

-5.4 -45 -3.6 -2.7 -1.8 -0.9

Longitude

264

260

™
R
£

(Degrees Kelvin)

240

236

232

_images/AOD550n_3.png
a%réosol optical thickness at 550 nm

27

Latitude
(1

24

B
e sEy b

21 B i 0.4

2
~5.4-4.5-3.6-2.7-1.8 —0.9
Longitude

_images/HorizontalNN.png
Latitude

TOA Outgoing Clear-Sky Shortwave Radiation

©
S

=
3

w
S

o

|
w
S

|
-3
S

-90
~180 -120 —60 0 60 120
Longitude

180

_images/OriginalData.png
Latitude

|
w
S

|
-3
S

|
©
S

TOA Outgoing Clear-Sky Shortwave Radiation

60 120 180 240 300
Longitude

360

_images/MODIS_L2.png
Latitude

Cloud Top Pressure

27.58

“24551 —46.31
Longitude

le3

10

0.9

(hPa)

0.4

0.3

0.2

_images/hadgem_collocated.png
Latitude

HadGEM AOT550

o

_images/angstrom_exponent.png
16

12

AERONET 440-870Angstrom

0.4

0.0

© ~ © < =)
i — S S S
(COpY/0£8)60IAdWNU/(0YY™LOV/0£8” LOV)BOIAAWNU)L(T-) 13INOYIV

_images/dep.png

_images/MOD08_on_AOD550_nn_kdt.png
Cloud Il

27

Latitude

24

21

p Temperature: Mean of Daily Mean

-5.4-4.5-3.6-2.7-1.8-0.9

Longitude

264

260

™
R
£

(Degrees Kelvin)

240

236

232

_images/MOD08_on_AOD550_hsep_75km.png
Cloud;r&:p Temperature: Mean of Daily Mean
264

i 260

256

27

252

248

Latitude

24

(Degrees Kelvin)

Y]
x
S

240

236

~5.4-4.5-3.6-2.7-1.8 0.9
Longitude

_images/model.png
Latitude

=30

-60

-90

220

30

230

SURFACE TEMPERATURE AFTER TIMESTEP

60 90 120 150 180 210 240 270 300 330 360

Longitude

240 250 260 270 280 290
(K)

300

_images/HorizontalLI.png
Latitude

TOA Outgoing Clear-Sky Shortwave Radiation

©
S

=
3

w
S

o

|
w
S

|
-3
S

-90
~180 -120 —60 0 60 120
Longitude

180

_images/echam_aggregated.png
Latitude

0.00

0.05

0.10

0.15

ECHAM AOT550

]
Longitude

020 025 030
1)

0.35

0.40

0.45

0.50

_images/echam_hadgem_difference.png
Latitude

|
w
S

-60

-180 =120 -60

ECHAM-HadGEM difference AOT550

[60 120 180
Longitude

0.05 010 015 020 0.25

-0.25 -0.20 -0.15 -0.10 -0.05 0.00

(unknown)

_images/overlay2.png
Latitude

90

AOD@550nm

175

=90
-180

=120

-60

0
Longitude

60

120

0.64

0.56

0.48

0.40

0.32

0.24

0.16

0.08

1)

_images/aerosol_cci.png
Latitude

60

30

=30

4.8

aerosol optical thickness at 550 nm

4.2

3.6

30

60
Longitude

90

150 0.6

_images/NCAR-RAF-4.png
altitude (m)

ADC Total Air Temperature

time (days since 1600-01-01 00:00:00)

(deg_C)

_images/NCAR-RAF-2.png
Latitude

60

30

ADC Total Air Temperature

—171-162 —153 —144 —135 126
Longitude

=12

eg_C)

-18%

-24

=30

-36

_static/down-pressed.png

_static/plus.png

_static/comment.png

_images/MOD08_on_AOD550_kdt_hsep_100km_full.png
Latitude

60

30

=30

Cloud Top Temperature: Mean of Din Mean

0 30 60 90 120 150
Longitude

288

280

272 ¢

264

(Degrees Kelvin

N
&
=)

248

240

_images/RF04.png
AO2 CO2

60
460
54
440
48 420
o 4005
3
Sa K]
=] =
K] 3803
36
360
30 340
320
24

-162 -156 -150
Longitude

_images/RF04_col.png
400

(920T/T)
© ©
2
= jal

392
384
61

360

AO2 CO2

apmne]

-90

180 240 300 360
Longitude

120

60

352

_images/overlay1.png
0.64

0.56

0.48

0.40

()

0.32

0.24

0.16

0.08

AOD@550nm

90

apniyize]

180
Longitude

_images/Aerosol_CCI.png
Latitude

60

30

=30

4.8

aerosol optical thickness at 550 nm

4.2

3.6

30

60
Longitude

90

150 0.6

_images/AOD550_on_MOD08_kdt_hsep_50km_full_zoom.png
aerosol optical thickness at 550 nm

60

54

IS
@

Latitude

IS
S

36

=27

-18

-9

Longitude

4.8

4.2

3.6

3.0

2.4

18

12

0.6

1)

_images/MODIS_L3.png
Combined Cloud Water Path: Mean

7'?79.5 -129.5 -79.5 -29.5 20.5 70.5 120.5 170.5
Longitude

| |

0 60 120 180 240 300 360 420 480 540 600
(g/md)

_images/modis_cloud_fraction.png
Latitude

Cloud cover fraction

132 135 138 141 144 147 150 153 156 159 162
Longitude

_images/line.png
Precipitation (kg/m? /s)

le-4 Zonal mean of total precipitation rate
0.8
0.6
0.4
0.2
-90 -60 =30 0 30 60

Latitude (degrees)

90

_static/comment-close.png

_static/up.png

_static/down.png

_images/AOD550_on_MOD08_kdt_hsep_50km_full.png
Latitude

aerosol optical thickness at 550 nm

-120 —60 0 60 120
Longitude

4.8

4.2

3.6

3.0

2.4

18

12

0.6

1)

_images/modis_optical_depth.png
Latitude

132 135 138 141 144 147 150 153 156 159 162
Longitude

_images/MODIS-7.png
Latitude

=30

-60

Cloud Top Temperature: Mean of Daily Mean

0
Longitude

60

180

288

280

272

264

256

(Degrees Kelvin)

N
PN
)

240

232

224

_images/NCAR-RAF-1.png
Latitude

ADC Total Air Temperature

90

IS
NS N

o

60

30

0
~180-171-162 153 —144 —135 126
Longitude

24

16

-16

-24

=32

-40

(deg_C)

_images/cloudsat_RVOD.png
Height (m)

led Radar/VOD Liquid Water Content

3.0

25

20

15

10

osf TR g

i i :
0w kg 60 E3 100
Profile_time (scconds) +4.5723424e8

| R |
0 100 200 300 400 500 600 700 800 900

(mgm™)

_images/agoufou_18022013_all_three.gif
AOT_440
AOT_870
AOT_1020

o
P - > o s ®
——— o
< ewas - -

R DO g,

Ll -t

-

- =
i W sl

U, g R M N e s

12 A

PR P B e

Commee IR

P s oaw

PP O

et A g e a e
.Aﬂ A

i

b

Jan 312009

Jan 24 2009

Jan 17 2009

Date time

Jan 10 2009

Jan 03 2009

W

0.8

<
S
ssawyIyL [e2ndo |osoiay

0.6
0.2

0.0

_images/Cloud_CCI_col.png
Latitude

©
S

@
3

w
S

o

|
w
S

|
=3
S

|
©
S

o

cloud liquid water path

60 120 180 240 300 360
Longitude

le3

135

120

1.05

0.90

0.60

0.45

0.30

0.15

0.00

(g/m2)

_images/PressureOriginal.png
air_pressure (Pa)

100000

90

Air temperature

=30 0 30
latitude (degrees)

300

285

270

255

240

225

210

195

(K)

_images/comparativehistogram3d.png
AOT at 440nm

=
N

0.8

0.2

0.4 0.6 0.8 10
440-870nm Angstrom Exponent

12

14

540

480

420

360

300

240

Frequency

180

120

60

_images/gridded_collapse.png
rsutcs (W m-2)

110

100

90

80

70

60

50

40

-90

-60

=30

0
latitude (degrees)

30

60

90

_images/PressureSlice1.png
Latitude

=30

-60

-90

Air temperature

120 180 240
Longitude

360

304
296
288
280
272 g
264
256
248

240

_images/Aerosol_CCI_col.png
Latitude

©
S

@
3

w
S

o

|
w
S

|
=3
S

|
©
S

aerosol optical thickness at 550 nm

60 120 180 240 300
Longitude

360

4.0

35

3.0

25

2.0

15

1.0

0.5

1)

_images/modis_aggregated_aod.png
Latitude

Aerosol optical depth (cloud fraction > 0.2)

132 135 138 141 144 147 150 153 156 159 162
Longitude

032
028
024 _
0.20 £
H
016 §
<
0125
0.08
0.04
0.00

_images/PressureSlice2.png
Latitude

=30

-60

-90

Air temperature

120 180 240
Longitude

360

304
206
288
280
2128
264
256

248

_images/Aerosol_CCI_4x4.png
N
o
o

N
o
¥

9
k<]
2
il

N
&
®

N
&
IS

0.0

aerosol optical thickness at 550 nm

05 10 15 20 25 3.0
Longitude

1.02

0.96

0.90

0.84

0.78

0.72

0.66

0.60

1)

_images/caliop_l1b.png
o
3
2

Profile_Time (dayssince1600-01-0100:00:00)

10°

10°

(perkilometerpersteradian)

_images/MOD08_on_AOD550_kdt_hsep_100km_var_full.png
2 g NG e o
2 8 R 3§ g8 2 g
& ® KR & & & &
2
c
< 2
g
=
H g
i} N
=}
2
5
H o
s 2
= 2
= g
g)
3l g
&l 83
g
g
£
o
2 2
5
8
K]
E o
o

(uinjzy se1600)

apmne]

_images/comparative_scatter_Aeronet.png
AOT at 440nm

o
@

20

16

=
N

0.4

0.0

0.2

0.4 0.6 0.8 10
440-870nm Angstrom Exponent

12

14

_images/overlay3.png
Latitude

90

AOD@550nm

0.6923

0.5838

0.4754

0.3669

0.2585

0.1500

=90
-180

=120

-60

0
Longitude

60

120

1)

_images/Cloud_CCI.png
Latitude

18°N

12°N

6°N

ol

6°S

cloud liquid water path

2°S

75°E 80°E 85°E

90°E 95°E
Longitude

100°E 105°E 110°E

le3,

28
24
2.0
16 E
E)
12
08
04
0.0

_images/AOD550_on_MOD08_kdt_nn_full.png
Latitude

aerosol optical thickness at 550 nm

-120 60 0 60 120
Longitude

4.8

4.2

3.6

3.0

2.4

18

12

0.6

1)

